期刊文献+

一种高效自学习性回溯搜索优化算法 被引量:4

Effective Self-learning Backtracking Search Optimization Algorithm
下载PDF
导出
摘要 针对回溯搜索优化算法收敛速度慢的问题,文中在理论分析的基础上,分别对变异算子和交叉算子进行了改进。设计了双种群引导形式的变异算子,并引入一种基于麦克斯韦-玻尔兹曼分布变异尺度系数,有效地增加了变异方程的搜索效率,并设计了一种带有自学习性的交叉策略,使得回溯搜索优化算法的收敛速度和全局搜索性能均得到了一定的提高,通过数值实验,说明了改进的有效性。 For slow convergence speedof Backtracking Search Optimization Algorithm( BSA),this paper makes some improvements on mutation operator and crossover operator on base of theoretical analysis. Firstly,a mutation operator with two-population guided form is designed,anda novel mutation scale factor based on Maxwell-Boltzmann distribution is introduced, which enhance search efficiency of mutation equation effectively. Secondly, crossover strategy is designed with self-learning property,both them enhance the performance of BSA,and numericalexperiments for testing the improved BSA are given in the end.
作者 田文凯
出处 《电子科技》 2015年第2期41-45,50,共6页 Electronic Science and Technology
关键词 回溯搜索优化算法 麦克斯韦-玻尔兹曼分布 变异尺度系数 自学习性 差分进化算法 backtracking search optimization algorithm maxwell-boltzmann distribution mutation scale factor self-learning property differential evolutionary algorithm
  • 相关文献

参考文献13

  • 1Eberhart R, Kennedy J. A new optimizer using particle swarmtheory [ C ]. Proceedings of the Sixth International Symposi-um on Micro Machine and Human Science,MHS;95. ,IEEE,1995.
  • 2Karaboga D,Basturk B. A powerful and efficient algorithm fornumerical function optimization : artificial bee colony (ABC )algorithm [ J]. Journal of Global Optimization,2007,39(3):459 -471.
  • 3Price K V. Differential evolution:a fast and simple numericaloptimizer [ C]. Fuzzy Information Processing Society, 1996Biennial Conference of the North American, IEEE,2009.
  • 4Dorigo M, Maniezzo V. Ant system:optimization by a colonyof cooperating agents [ J]. IEEE Transactions on Systems,Man,and Cybernetics Part, 1996,26( 1 ) :29 -41.
  • 5Liang J J, Qin A K, Suganthan P N, et al. Comprehensivelearning particle swarm optimizer for global optimization ofmultimodal functions [ J]. IEEE Transactions on EvolutionaryComputation,2006,10(3) :281 -295.
  • 6Thangaraj R, Pant M, Ajith Abraham, et al. Particle swarmoptimization : Hybridization perspectives and experimental il-lustrations [J]. Applied Mathematics and Computation,2011,218(12) :5208 -5226.
  • 7Qin A K,Huang V L,Suganthan P N,et al. Differential evo-lution algorithm with strategy adaptation for global numericaloptimization [ J ] . IEEE Transactions on Evolutionary Compu-tation ,2009 ,13 (2) :398 -417.
  • 8Brest J,Greiner S,Boskovic B,et al. Self — adapting controlparameters in differential evolution : A comparative study onnumerical benchmark problems [ J ]. IEEE Transactions onEvolutionary Computation,2006,10(6) :646 - 657.
  • 9Zhu G, Kwong S. Gbest - guided artificial bee colony algo-rithm for numerical function optimization [ J]. Applied Math-ematics and Computation,2010,217(7) :3166 -3173.
  • 10Givicioglu P. Backtracking search optimization algorithm fornumerical optimization problems [ J ]. Applied Mathematicsand Computation,2013 ,220(15) :8121 - 8144.

同被引文献39

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部