期刊文献+

部分线性模型的adaptive group lasso变量选择 被引量:1

Variable selection for partially linear models via adaptive group lasso
下载PDF
导出
摘要 对部分线性模型的aglasso(adaptive group lasso)参数估计及变量选择问题进行研究.通过构造aglasso的估计函数,将分组部分线性模型变量的选择问题转化为分组因子的选择问题.理论研究表明:该方法能相合地识别真实模型,并且估计具有oracle性质.最后通过模拟研究了所提方法的有限样本性质. T his paper study the aglasso (adaptive group lasso ) for simultaneous parameter estimation and variable selection to a partially linear model . The selection of group variable for partially linear model is translated into seclection of group factor . The theoretical results show that the new method is able to identify the true model consistently , and the resulting estimator has the oracle property . T he finite sample performance of the proposed procedures is illustrated by simulation studies .
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2015年第1期27-31,共5页 Journal of Northwest Normal University(Natural Science)
基金 广东省科技计划资助项目(2012B010100044) 东莞市高等院校科研机构科技计划资助项目(2012108102031)
关键词 ADAPTIVE GROUP lasso oracle性质 变量选择 部分线性模型 adaptive group lasso oracle property variable selection partially linear model
  • 相关文献

参考文献13

  • 1ENGLE R F, GRAGER C W J, RICE L, et al. Semi parametric estimates of the relation between weather and electricity sales [J]. J Amer Statist Assoc, 1986, 81: 310-320.
  • 2HARDLE W, LIANG H, GAO J T. Partially Linear Models [M]. Heidelberg: Springer, 2000: 131-150.
  • 3XUE L G, ZHU L Z. Empirical likelihood semi parametric regression analysis for longitudinal data[J]. Biometrika, 2007, 94: 921-937.
  • 4FRANK 1, FRIEDMAN J. A statistical view Of some chemometrics regression tools with discussion) [J]. Tech.nometrics , 1993, 35: 109- 148.
  • 5TIBSHIRANI R. Regression shrinkage and selection via the lasso[J]. J R Stat Soc: Ser B, 1996, 58: 267-288.
  • 6ZOU H. The adaptive lasso and its oracle properties[J]. J Amer Statist Assoc, 2006, 101: 1418-1429.
  • 7YUAN M, LIN Y. Model selection and estimation in regression with grouped variables [J]. J R Stat Soc(SerB), 2005,68: 49-67.
  • 8WANG H S, LENG C L. A note on adaptive group lasso [J]. Com put Statist Data Anal, 2008, 52: 5277-5286.
  • 9LI R Z, LIANG H. Variable selection In semi parametric regression modeling[J]. Ann Statist, 2008, 36: 261-286.
  • 10LIANG H. LI R Z. Variable selection for partially linear models with measurement errors[J]. J Amer Statist Assoc, 2009, 104: 234-248.

二级参考文献18

  • 1ROBERT F ENGLE, GRANGER C W J, RICE J, et al. Semiparametric estimates of the relation between weather and electric- ity sales [J].Journal of the American Statistical Association, 1986, 81:310-320.
  • 2SPECKMAN P. Kernel smoothing in partial linear models[J]. Journal of the Royal Statistical Society:Series B, 1988, 50: 413-436.
  • 3HARDLE W, LIANG Hua, GAO Jiti. Partially linear models [ M]. Heidelberg:Springer Physica, 2000.
  • 4TIBSHIRANI R. Regression shrinkage and selection via the lasso [ J ]. Journal of the Royal Statistical Society: Series B, 1996, 58:267-288.
  • 5KNIGHT Keigth, FU Wenjiang. Asymptotics for lasso-type estimators [ J]. Annal of Statistics, 2000, 28:1356-1378.
  • 6EFRON B, HASTIE T. TIBSHIRANI R. Least angle regression (with discussion) [J]. Annal of Statistics, 2004, 32:407-451.
  • 7FAN Jianqing, LI Runze. Variable selection via nonconcave penalized likelihood and its oracle properties [J].Journal of the American Statistical Association, 2001, 96 : 1348-1360.
  • 8CANDES E, TAO T. The Dantzig selector: statistical estimation when p is much larger than n [J]. Annal of Statistics, 2007, 35:2313-2351.
  • 9FAN Jianqing, LI Runze. New estimation and model selection procedures for semiparametric modeling in longitudinal data a- nalysis[J]. Journal of the American Statistical Association, 2004, 99:710-723.
  • 10XIE Huiliang, HUANG Jian. SCAD-penalized regression in high-dimensional partially linear models[J].Annal of Statistics, 2009, 37:673-696.

共引文献4

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部