期刊文献+

三维斜流线性完全耦合层吸收边界条件 被引量:1

Three Dimensional Linear PML Absorbing Boundary Conditions with an Oblique Mean Flow
下载PDF
导出
摘要 采用傅里叶与拉普拉斯变换方法分析了三维斜流背景下声波、涡波与熵波的色散关系;根据各物理波的色散轨迹特征,结合频率变化的时空坐标变换方法,给出了一组时间与空间坐标变换关系式,并将三维斜流线性欧拉方程变换至新坐标系;采用复数变换方法,引入阻尼,分别构建了x层、y层、z层及角层的完全耦合层(PML)吸收边界条件,给出了吸收项的施加原则;最后通过三维脉冲声波、对称涡环与周期性点声源在斜时均流中的传播问题验证了该吸收边界条件的正确性。研究结果表明:所提出的坐标变换关系能够有效解决各物理波相位速度与群速度不一致的问题;在斜背景流下,该PML吸收边界条件能较好地吸收物理波,有效抑制边界反射,可用于气动声学计算。 For three dimensional linear Euler equations in the case ot oblique mean lIow, the dis- persion relations of acoustic, vortex and entropy wave were first analyzed by using Fourier and La- place transform method. Then the hypothesis for changed frequency was employed, a proper space- time transformation was presented for deriving three dimensional linear Euler equations in trans- formed coordinates. A complex change was applied to the new equations and a damping parameter was introduced. A three linear PML absorbing boundary conditions in the case of oblique mean flow for x layer, y layer, z layer and corner layer were derived. In addition, the importance of added ab- sorption term was emphasized. Finally, the effectiveness of linear PML absorbing boundary condi- tions was validated by computing the computational aeroacousties benchmark problems. The results prove that: the presented space-time transformation can solve the problem of direction inconsistence in group and phase velocity of physical wave; in the case of oblique mean flow, the proposed PML ab- sorbing boundary conditions can absorb the physical wave with little or no reflection. Therefore, it also can be applied to aeroacoustic computation.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2015年第1期1-7,共7页 China Mechanical Engineering
基金 国家自然科学基金资助项目(11302075 11002052) 湖南省教育厅高等学校科学研究项目(12C0627)
关键词 完全耦合层 边界条件 计算气动声学 欧拉方程 色散 perfectly matched layer (PML) boundary condition computational aeroacoustics Euler equation dispersion
  • 相关文献

参考文献14

  • 1Berenger J P. A Perfectly Matched Layer for the Absorption of Electromagnetie Waves J . Journal of Computational Physies, 1994, 114(2): 185- 200.
  • 2Hu F Q. On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer[J]. Journal of Computational Physics, 1996, 129(1): 201-219.
  • 3Hu F Q. A Stable Perfectly Matched Layer for Line- arized Euler Equations in Unsplit Physical Varia- blesEJ . Journal of Computational Physics, 2001, 173(2) : 455-480.
  • 4Hu F Q. A Perfectly Matched Layer Absorbing Boundary Condition for l.inearized Euler Equations with a Non-uniform Mean Flow[J]. Journal of Computational Physics, 2005, 208(2): 469-492.
  • 5Hu F Q, Li X D, Lin D K. Absorbing Boundary Condition for Nonlinear Euler and Navier-stokes Equations Based on the Perfectly Matched Layer TeehniqueEJ . journal of Computational Physies, 2008, 227(9): 4398-4424.
  • 6Lin D K, Li X D, Hu F Q. Absorbing Boundary Condition for Nonlinear Euler Equations in Primi- tive Variables Based on the Perfectly Matched Lay- er Technique[J]. Computers 5. Fluids, 2011, 40 (1): 333-337.
  • 7Zhou Y, Wang Z J. Absorbing Boundary Conditions for the Euler and Navier - stokes Equations with the Spectral Difference MethodD . Journal of Com- putational Physics, 2010, 229(23): 8733-8749.
  • 8柳占新,高频,仝志勇.全欧拉方程的理想匹配层边界条件[J].中国机械工程,2011,22(16):1938-1941. 被引量:2
  • 9周正干,魏东.时域有限差分法在超声波声场特性分析中的应用[J].机械工程学报,2010,46(2):9-13. 被引量:15
  • 10Parrish S A, Hu F Q. PML Absorbing Boundary Conditions for the Linearized and Nonlinear Euler Equations in the Case of Oblique Mean Flow[J]. International Journal for Numerical Methods in Fluids, 2009, 60(5): 565-589.

二级参考文献20

  • 1Du Sanhu,Zhan Fuliang,Li Zailiang (Solid Mechanics Research Center,Beijing University of Aeronautics and Astronautics).DETECTION OF DELAMINATION IN A COMPOSITE PLATE BY SEM[J].Chinese Journal of Mechanical Engineering,2001,14(4):289-292. 被引量:2
  • 2何存富,李隆涛,吴斌.空心圆柱体中的周向超声导波[J].机械工程学报,2004,40(8):7-12. 被引量:23
  • 3杨丹,方剑,廖成,任朗.PML吸收边界条件在孔缝耦合模拟中的应用[J].西南交通大学学报,2005,40(1):108-112. 被引量:7
  • 4李景叶,陈小宏.TI介质地震波场数值模拟边界条件处理[J].西安石油大学学报(自然科学版),2006,21(4):20-23. 被引量:11
  • 5李太宝.计算声学-声场的方程和计算方法[M].北京:科学出版社,2003.
  • 6YEE K S. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14 (3): 302-307.
  • 7MUR G. Absorbing boundary conditions for the finitedifference approximation of the time-domain electromagnetic field equations[J]. IEEE Transactions on Electromagnetic Compatibility, 1981, EMC-23(4): 377-382.
  • 8BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114: 185-200.
  • 9COLLINO F, TSOGKA C. Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J]. Geophysics, 2001, 66(1): 294-307.
  • 10Hixon R, Shih S H, Mankbadi R R. Evaluation of Boundary Conditions for Computational Aeroaocustics[J]. AIAA Paper 95-0160.

共引文献15

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部