摘要
设G是一个图.G的顶点u和v的距离是u和v之间最短路的长度.Wiener指数是G中所有无序顶点对之间距离之和,而Hyper-Wiener指数定义为WW(G)=?∑u,v∈V(G)d(u,v)+?∑u,v∈V(G)d2(u,v),式中的和取遍G的所有顶点对.本文总结了图的Hyper-Wiener指数的最近结论.
Let G be a graph. The distance d(u,v) between the vertices u and v of the graph G is equal to the length of a shortest path that connects u and v. The Wiener index W(G) is the sum of all distances between vertices of G,whereas the Hyper - Wiener index WW(G) is defined as WW(G)=1/2∑u,v∈V(G)d(u,v)+1/2∑u,v∈V(G)d2(u,v),with the summation going over all pairs of vertices in G. In this paper, we survey recent results on the Hyper - Wiener index of graphs.
出处
《数学理论与应用》
2014年第4期12-40,共29页
Mathematical Theory and Applications
基金
Supported by SDIBT for youth No.2013QN055