期刊文献+

基于一维光子晶体陷光的超薄晶硅太阳电池光学结构优化 被引量:4

Optimal Design of Ultrathin c-Si Solar Cell with Light Trapping Structure of One Dimensional Photonic Crystal
下载PDF
导出
摘要 先选择增透膜、Ag底面反射镜和三角带型一维光子晶体结构作为超薄晶硅电池(有源层厚度为12μm)的陷光结构,然后利用有限差分频域法对这一陷光结构进行了优化,最后通过吸收光谱和光电流密度谱对优化的陷光结构性能进行了评估。计算表明:在300 nmλ800 nm的波长范围内,优化陷光结构实现了Yablonovith陷光极限;在800 nmλ1100 nm的波长范围内,该优化陷光结构的性能略低于Yablonovith陷光极限,但明显高于矩形条带式一维光子晶体陷光结构的陷光性能。 The bilayer antireflecting coating, Ag back reflector and front surface texture of one dimensional photonic crystal were first chosen as the light trapping structure of ultrathin silicon solar cell with its active layer thickness equal to 12 μm,then the light trapping structure were optimized by finit difference frequency domain method,and the performance of the optimal light trappingt structure was evaluated by absorptance spectra and photocurrent density spectra. The results show that the optimal light trapping structure can achieve the performance of Yablonovith light trapping structure in the wavelength range from 300 nm to 800 nm and it can also achieve a performace lower than that of Yablonovith light trapping structure in the wavelength range from 800 nm to 1100 nm,but its light trapping performace is obviously higher than that of the light trapping structure of one dimensional photonic crystal with rectangular profile.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2014年第11期2918-2922,2934,共6页 Journal of Synthetic Crystals
基金 国家自然科学基金(11304020) 辽宁省教育厅一般项目(L2012401)
关键词 太阳电池 晶硅 陷光结构 光子晶体 solar cell c-Si light trapping structure photonic crystal
  • 相关文献

参考文献22

  • 1YouJ, Dou L, Yoshimura K. A Polymer Tandem Solar Cell with 10. 6% Power Conversion Efficiency[J] . Nature Communications, 2013,4 ( I ) : 1446.
  • 2Mohr NJ, Meijer A, Huijbregts M A 1, et a1. Environmental Life Cycle Assessment of Roof-Integrated Flexible Amorphous Siliconl Nanocrystalline Silicon Solar Cell Laminate[J]. Progress in Phoioioluucs , Research and Applications ,2013,21 (4) :802-815.
  • 3Zhang K, Su Z, Zhao L, et al. Improving the Conversion Efficiency ofCu2ZnSnS4 Solar Cell by Low Pressure SulIurization[J].Applied Physics Leu.ers,2014,104( 14): 141101.
  • 4Carmona C R, Malinkiewicz O, Soriano A, et al. Flexible High Efficiency Perovskite Solar Cells[J] . Energy & Emnronmerual Science, 20 14,7 (3) :994-997.
  • 5Wang S, Weil B D, Li Y, et al. Large-area Free-standing Ultrathin Single-crystal Silicon as Processable Materials[J]. Nano Leuers , 20 13,13 (9) :4393-4398.
  • 6Willeke G P. Thin Crystalline Silicon Solar Cells[J] . Solar Energy Materiols ami Solar Cells ,2002, 74( 1-4) : 191-200.
  • 7Solanki C S, Bilyalov R R, PoortmansJ, et al. Characterization of Free-Standing Thin Crystalline Films on Porous Silicon for Solar Cells[J]. Thin Solid Films ,2004 ,451452 :649-654.
  • 8Reuter M, Brendle W, Tobail 0, et al. 50 rnm Thin Solar Cells with 17.0% Efficiency[J]. Solar Energy Materials & Solar Cells ,2009 ,93: 704- 706.
  • 9CampaJ L C, Okandan M, Resnick PJ, et al. Microsystems Enabled Photovoltaics , 14.9% Efficient 14 m Thick Crystalline Silicon Solar Cell[J]. Solar Energy Materials & Solar CeLLs ,2011,95 :551-558.
  • 10Jeong S, McGehee M D, Cui Y. All-back-contact Ultra-thin Silicon Nanocone Solar Cells with 13.7% Power Conversion Efficiency[J]. Nature Communications ,2013 ,4( I ) :2950.

二级参考文献2

共引文献3

同被引文献22

  • 1Piotr K, Claudio A L. Towards the efficiency limits of silicon solar cells: How thin is too thin? [J]. Solar Energy Mater Solar Cells, 2015,143:260.
  • 2Jeong S, McGehee M D, Cui Y. All-back-contact ultra-thin silicon nanocone solar cells with 13. 7% power conversion efficiency[J]. Nat Commun, 2013,4 (1) : 2950.
  • 3Shah A, Moulin E, Ballif C. Technological status of plasma-deposi- ted thin-film silicon photovoltaics [J]. Solar Energy Mater Solar Cells,2013,119(12) :311.
  • 4Lin Y, Battaglia C, Boccard M,et al. Amorphous Si thin film based photocathodes with high phot0voltage for efficient hydrogen produc- tion[J]. Nano Lett,2013,13(11) :5615.
  • 5Reuter M, Brendle W, Tobai O L, et al. 50 mm thin solar cells with 17.0% efficiency[J]. Solar Energy Mater Solar Cells, 2009,93 (2) : 704.
  • 6Spinelli P, Ferry V E, Groep J V D, et al. Plasmonic light trapping in thin-film Si solar eells[J]. J Opt,2012,14:024002.
  • 7Yang Y, Pillai S, Mehrvarz H, et al. Plasmonic degradation and the importance of over-coating metal nanoparticles for a plasmonic solar cell[J]. Solar Energy Mater Solar Cells,2014,122.. 208.
  • 8Ferry V E, Verschuuren M A, Li H B T, et al. Light trapping in ultrathin plasmonic solar cells[J]. Opt Express,2010,18(S2):A237.
  • 9Mercaldo L V, Veneri P D, Usatii L, et al. Broadband near-field effects for improved thin film Si solar cells on randomly textured sub- strates [J]. Solar Energy Mater Solar Cells,2013,112:163.
  • 10Lin Y, Battaglia C, Boceardet M, et al. Amorphous Si thin film based photoeathodes with high photovoltage for efficient hydrogen production[J]. Nano Lett, 2013,13 (11) : 5615.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部