期刊文献+

基于进化建模方法的HJ-1 CCD黄海悬浮物和叶绿素a浓度遥感反演模型研究 被引量:8

Retrieval models of total suspended matter and chlorophyll aconcentration in Yellow Sea based on HJ-1 CCD data and evolutionary modeling method
下载PDF
导出
摘要 本文利用实测数据集,发展了基于进化建模方法的HJ-1CCD黄海悬浮物(TSM)和叶绿素a浓度(Chl a)遥感反演模型,建模过程中有针对性地设计了适合水色反演的端点集和函数集,并利用转基因方法引入水色先验知识。经实测数据检验,TSM反演的平均相对误差约为31%(相关系数R2为0.96),Chl a反演误差约为33%(R2为0.88)。分析了模型对输入误差的敏感性,当输入端引入±5%的误差时,模型误差的波动在大多数情形下都可控制在±10%以内。与神经网络模型相比,本文发展的进化模型具有检验精度高、结构简单等优势。利用不同季节的黄、东海实测数据进行了模型精度的独立检验。本文的研究工作表明,进化建模方法适用于水色遥感反演建模问题,可由程序自动生成多个满足精度要求、结构形式多样的显式模型,为水色反演应用提供了多种选择,对于拥有数百个波段的高光谱数据水色反演具有更大的应用潜力。本文最后探讨了进化建模方法的改进方向。 By using the in-situ measuring data, this study developed retrieval models of chlorophyll a (Chl a) and total suspended matter (TSM) for HJ-1 CCD data in the Yellow Sea based on the evolutionary modeling method. The terminal and function set of the evolutionary modeling method were designed to be adapted to retrieval of wa- ter constituents, and the transgene operator was employed to insert and maintain the prior knowledge. The average percentage difference (APD) for TSM was 31% (the correlation coefficient R2 = 0.96), and that for Chla was 33 % (R^2 =0.88). The error sensitivity of the retrieval models was analyzed, and the output errors were generally less than ±10 % when introducing ± 5 % error of remote sensing reflectance. Compared with neural network method, the evolutionary models have higher accuracy and simpler structures. In addition, in-situ data with different sea- sons was employed to validate the accuracy of the retrieval models. This study shows that the evolutionary model- ing method is applicable for retrieval of water constituents from ocean color remote sensed data. Many explicit models with well accuracy and different structures could be obtained automatically, and they are of potential appli- cations for hyperspectral data. Finally, we discussed how to improve the method in the near future.
出处 《海洋学报》 CAS CSCD 北大核心 2014年第11期142-149,共8页
基金 国家自然科学基金项目(41476159) 国家高技术研究发展计划(2013AA122803) 中国科学院海洋研究所近海海洋科学考察开放航次
关键词 HJ-1 CCD 悬浮物 叶绿素A 进化建模 黄海 HJ-1 CCD total suspended matter chlorophyll a evolutionary modeling the Yellow Sea
  • 相关文献

参考文献15

  • 1HJ-1-A、B卫星介绍[EB/OL].http://www.cresda.com/n16/n1130/n1582/8384.html.2010-07-11.
  • 2朱利,姚延娟,吴传庆,张永军,陈静,王颖.基于环境一号卫星的内陆水体水质多光谱遥感监测[J].地理与地理信息科学,2010,26(2):81-84. 被引量:31
  • 3王桥,吴传庆,厉青.环境一号卫星及其在环境监测中的应用[J].遥感学报,2010,14(1):104-121. 被引量:41
  • 4Sathyend Ranath S. Remote Sensing of ocean color in coastal and other optically-complex waters[R]. Dartmouth, Canada: IOCCG, 2000.
  • 5Tassan S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(12): 2369-2378.
  • 6唐军武,王晓梅,宋庆君,李铜基,黄海军,任敬萍,简伟军.黄、东海二类水体水色要素的统计反演模式[J].海洋科学进展,2004,22(B10):1-7. 被引量:30
  • 7马超飞,蒋兴伟,唐军武,王晓梅,李铜基,黄海军,任敬萍.HY-1 CCD宽波段水色要素反演算法[J].海洋学报,2005,27(4):38-44. 被引量:17
  • 8Gitelson A A, Schalles J F, Hladik C M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study[J]. Remote Sensing of Environment, 2007, 109(4): 464-472.
  • 9Carder K L, Chen F R, Cannizzaro J P, et al. Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a[J]. Adv Space Res, 2004, 33(7): 1152-1159.
  • 10Garver S A, Siegel D. Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea[J]. Journal of Geophysical Research: Oceans. 1997, 102(C8): 18607-18625.

二级参考文献35

  • 1唐军武,王晓梅,宋庆君,李铜基,黄海军,任敬萍,简伟军.黄、东海二类水体水色要素的统计反演模式[J].海洋科学进展,2004,22(B10):1-7. 被引量:30
  • 2马超飞,唐军武,王其茂,郭茂华.黄、东海区总悬浮泥沙对HY-1 CCD数据叶绿素浓度反演的影响[J].海洋科学进展,2004,22(B10):115-120. 被引量:4
  • 3TANGJunwu,WANGXiaomei,SONGQingjun,LITongji,CHENJiezhong,HUANGHaijun,RENJingping.The statistic inversion algorithms of water constituents for the Huanghai Sea and the East China Sea[J].Acta Oceanologica Sinica,2004,23(4):617-626. 被引量:33
  • 4Bendix J, Thies B and Cermak J. 2003. Fog detection with TERRA-MODIS and MSGSEVIRI. Proceedings 2003 Met. Sat. Users' Conf. Weimar (Germany), EUMETSAT.
  • 5Gordon H R and Wang M H. 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with seawifs: a preliminary algorithm. Applied Optics, 33(3): 443-452.
  • 6Gordon H R. 1997. Atmospheric correction of ocean color imagery in the earth observing system era. Journal of Geophysical Research, 102(14): 17081-17106.
  • 7Jim6nez-Munoz J C and Sobrino J A. 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research.108(D22): 4688-4695.
  • 8Lee Z R Weidemann A, Kindle J, Arnone R, Carder K L and Davis C. 2007. Euphoric zone depth: Its derivation and implication to ocean color remote sensing. JGR, 112. C03009.
  • 9Liou K N. 2002. An Introduction to Atmospheric Radiation. San Diego: Academic Press.
  • 10Remer L A, Didier Tanre and Yoram. 2006. Kaufmanl Algorithm for remote sensing of tropospheric aerosol from MODIS: collection 5. Unpublished.

共引文献111

同被引文献136

引证文献8

二级引证文献83

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部