期刊文献+

振动监测在燃气轮机叶片故障诊断中的应用 被引量:4

Application of vibration monitoring in fault diagnosis of gas turbine blades
下载PDF
导出
摘要 振动监测是公认的检测和诊断燃气轮机初期故障的有效工具。总结了基于振动的燃气轮机叶片故障检测方法,详细介绍了频谱分析法、小波分析法、神经网络和模糊理论预判分析法以及基于模型的分析法。采取合适的方法提取动态信号,可以诊断出大多数类型的叶片故障。 Vibration monitoring is recognized as effective tool for the detection and early diagnosis of gas turbine fault. The article summarized vibration fault detection methods for gas turbine blade,introduced spectrum analysis,wavelet analysis,neural network and fuzzy theory pre-judgment analysis and model-based analysis methods in detail. The results show that,by adequately extracting the dynamic signal,most types of blades dysfunctions can be diagnosed.
作者 彭彤宇
出处 《华电技术》 CAS 2014年第12期40-42,82-83,共3页 HUADIAN TECHNOLOGY
关键词 燃气轮机 叶片 故障诊断 振动监测 信号分析 gas turbine blade fault diagnosis vibration monitoring signal analysis
  • 相关文献

参考文献24

  • 1Goel N, Kumar A, Narasimhan V, et al. Health risk assess- ment and prognosis of gas turbine blades by simulation and statistical methods[ C ]//Canadian Conference on Electrical and Computer Engineering. Niagara Falls: IEEE, 2008: 1087 - 1092.
  • 2Meher-Homji C B. Blading vibration and failures in gas tur- bines, Part B: compressor and turbine airfoil distress[ C]// ASME International Gas Turbine and Aeroengine Congress. Houston : ASME, 1995.
  • 3Leong M S. Field experiences of gas turbines vibrations : a re- view and case studies [ J ]. Journal of System Design and Dy- namics ,2008,2( 1 ) :24 - 35.
  • 4Simmons H R. A nonintrusive method for detecting HP blade resonance [ C ]//Proceedings of the Joint ASME/ IEEE Power Generation Conference. Portland:ASME, 1986.
  • 5Simmons H R. Nonintrusive detection of turbine blade reso- nance [ C ]//Third EPRI Conference on Incipient Failure Detection in Power Plants. Philadelphia: EPRI, 1987: 10 -12.
  • 6Beebe R. Condition monitoring of steam turbines by perform- ance analysis[ J]. Journal of Quality in Maintenance Engi- neering ,2003,9 ( 2 ) : 102 - 112.
  • 7Gupta K N. Vibration: a tool for machine diagnostics and con- dition monitoring[J]. Sadhana, 1997, 22(3) :393 -410.
  • 8Kuo R J. Intelligent diagnosis for turbine blade faults using artificial neural network & fuzzy logic [ J ]. Engineering Ap- plication of Artificial Intelligence, 1995,8 ( 1 ) :25 - 34.
  • 9Sudmersen U, Pietseh O, Scheer C, et al. Condition monito- ring of steam turbines by combined vibration and process pa- rameter analysis [ C]//6th COTEQ Conference. Salvador : COTEQ, 2002.
  • 10Barragan J M. Engine vibration monitoring and diagnosis based on on-board captured data[ C]//RTO AVT Symposi- um. Manchester: MTU Aero Engines GMBH Munich,2001 : 8 -11.

同被引文献44

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部