期刊文献+

片上网络业务量的自相似性分析及模型研究 被引量:1

Self-similarity Analysis and Modeling for On-chip Traffic
下载PDF
导出
摘要 进行片上网络的架构、映射、流控与服务质量(Quality of Service,QoS)等研究时,迫切需要一个准确的业务量模型用于延时分析与测试验证,以保证设计的性能。而现有的基于马尔科夫模型和回归模型的短程相关模型无法准确地描述业务量的突发性和分形特性,不适用于基于流水的通信信号处理片上系统(System on Chip,SoC)芯片。为了解决这个问题,通过理论与实验相结合的方法,研究了网络拓扑、任务流图、映射对业务量自相似性的影响,根据通信系统的信号处理特点建立了多处理器片上系统(Multi-core Processing System on Chip,MPSoC)数据关联模型,利用典型DSP系统进行建模实验,用实测的业务量Hurst参数拟合数据关联模型参数与Hurst参数的经验函数关系式,建立了用MPSoC数据关联模型预测和估计业务量Hurst参数的方法。实验表明,采用该业务量模型估计的Hurst参数与其真实值误差较小,能较准确地描述业务量的自相似性。 An accurate traffic analysis model is needed for latency prediction and verification in on-chip design.Unfortunately,the state-of-art Markov-based short range dependent models cannot characterize burst and self-similarity of onchip traffic,therefore it is not applicable for the communication and signal processing SoCs.This paper proposed a selfsimilar NoC traffic model based on multiple parameters to provide accurate benchmarks for the design and verification of NoC.Using theoretical derivation and experimental method,this paper established an MPSoC information relevance model,provided an empirical fitting function between the parameters of the relevance model and Hurst parameter,and established the method to estimate Hurst parameter of NoC traffic.The experimental results prove that this traffic model can achieve an approximate and effective Hurst parameter.
出处 《计算机科学》 CSCD 北大核心 2014年第12期13-18,共6页 Computer Science
基金 新一代国家重大专项(2011ZX03003-003-04)资助
关键词 片上网络 业务量分析 自相似性 HURST参数 Network on chip Traffic analysis Self-similarity Hurst parameter
  • 相关文献

参考文献15

  • 1Tatas K, Siozios K, Sourdris, et al. Designing 2D and 3D Net- work-on-Chip Architectures [M]. New York,Springer,2014 : 3 -9.
  • 2Salihondam P,Khan M A,Jain S,et al. A Reconfigurable On-die Traffic Generator in 45nm CMOS for a 48 iA-32 Core Network- on Chip [C]~//Proceedings of IEEE International Conference on VLSI Design (VLSID). Hyderabad, 2012 : 292-297.
  • 3Chen Kun-Chih,Kuo Che-Chuan, Hung Hui-Shun, et al. Traffic and Thermal-aware Adaptive Beltway Routing for Three Dimen- sional Network on-Chip Systems [C]//Proceedings of IEEE In- ternational Symposium on Circuits and Systems (ISCAS). Bei jing, 2013 : 1660- 1663.
  • 4Manevich R, Cidon I, Kolodny A. Dynamic traffic distribution a- mong hierarchy levels in hierarchical Networks-on-Chip (NoCs) [C]~ // Proceedings of IEEE/ACM International Symposium on Networks on Chip (NoCS). Tempe, 2013:1-8.
  • 5Khonsari A, Aghajani M R, Tavakkol A, et al. Mathematical a- nalysis of buffer sizing for Network-on-Chips under multimedia traffic [C] // Proceedings of IEEE International Conference on Computer Design. Lake Tahoe, 2008 : 150-155.
  • 6Qian Zhi-liang, Bogdan P, Tsui C Y, etal. Performance Evalua- tion of Multieore Systems: From Traffic Analysis to Latency Predictions [C]//Proceedings of IEEE/ACM International Con- ference on Compute~Aided Design. 2013:82-84.
  • 7Kiasari A E, Lu Zhong-hai, Jantsch A. An analytical latency model for networks on-chip [J]. IEEE Transactions on Very Large Scale Integration Systems, 2013,21 ( 1 ) : 113-123.
  • 8Varatkar G, Marculescu R. On chip traffic modeling and synthe- sis for MPEG-2 video applications ~[J]. IEEE Transactions on Very Large Scale Integration Systems, 2004,12 (1) : 108-119.
  • 9Ngo V,Chang J, Bae Y, et al. Latency Optimization for NoC De- sign of H. 264 Decoder Based on SelPsimilar Traffic Modeling [C] // Proceedings of International Symposium on Parallel and Distributed Processing and Applications. Ontario, 2007 : 289-302.
  • 10Soteriou V,Wang H S,Peh L. A statistical traffic model {or on- chip interconnection networks [C]~//Proceedings of Internation- al Symposium on Modeling, Analysis, and Simulation of Com- puter and Telecommunication System. Monterey, 2006:104 -116.

同被引文献13

  • 1梁智涛,何慧,李斌.自相似流量生成算法研究[J].微计算机信息,2008,24(6):219-221. 被引量:10
  • 2张连明,陈志刚,刘安丰.一种基于FGN和IDFT的自相似通信量生成算法[J].通信学报,2004,25(11):16-25. 被引量:4
  • 3Supriya P,Priyanka P,Prof P W,et al.Application of Hurst Parameter and Fuzzy Logic for Denial of Service Attack Detection[C]//Proceedings of IEEE International Advance Computing Conference.Washington D.C.,USA:IEEE Press,2013:834-838.
  • 4Yue Zhang,Ning Huang,Ning Hu,et al.A Simplified Traffic Generating Method for Network Reliability Based on Self-similar Model[J].Journal of Communications,2013,8(10):629-636.
  • 5Coskun C,Cuneyt F B.Evaluation of Energy and Buffer Aware Application Mapping for Networks-on-Chip[J].Microprocessors and Microsystems,2014,38(4):325-336.
  • 6Inhye Y J.Multi-frame Example-based Super-resolution Using Locally Directional Self-similarity[J].Consumer Electronics,2015,12(2):2-4.
  • 7Ledesma S,Derong L.A Fast Method for Generating Selfsimilar Network Traffic[C]//Proceedings of International Conference on Communication Technology Proceedings.Washington D.C.,USA:IEEE Press,2000:54-61.
  • 8Ming Weiqin,Jian Haohui,Shang Mai.Affect Analysis of FFT Algorithm Length on Traffic Self-similarity in No C[C]//Proceedings of International Computer Conference on Wavelet Active Media Technology and Information Processing.Washington D.C.,USA:IEEE Press,2013:149-152.
  • 9Vern P.Fast Approximation of Self-similar Network Traffic[J].Computer Networks,1995,22(6):4-5.
  • 10王晖,季振洲,朱素霞.自相似网络流量模型研究[J].智能计算机与应用,2013,3(2):34-41. 被引量:5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部