期刊文献+

一种基于改进的层次聚类的协同过滤用户推荐算法研究 被引量:14

Collaborative Filtering Recommendation Algorithm Based on Improved User Clustering
下载PDF
导出
摘要 为了降低组用户推荐的计算时间,提出了一种改进的层次聚类协同过滤用户推荐算法。由于数据的稀疏性,传统的聚类方法在尝试划分用户群时效果不理想。考虑到传统聚类算法的聚类中心不变组内用户间相关度不高等问题,将用户进行聚类,然后按照分类计算出每个用户的推荐结果,在进行聚类的同时充分利用用户间的信息传递来增强组内用户的信息共享,最后将组内所有的用户的推荐结果进行聚合。最后仿真实验表明,本方法能够有效地提高推荐的准确度,比传统的协同过滤算法具有更高的执行效率。 In order to reduce the computation time of group user recommendation,this paper proposed an improved kmeans clustering collaborative filtering recommendation algorithm.Because of the sparsity of data,the effect of the traditional clustering methods is not ideal when trying to divide user group.This paper took into account that invariant group correlation between users in the clustering center of the traditional K-means algorithm is not high,made the user clustering,then according to the classification calculated recommended results of each user in the cluster,made full use of user information transmission between users to enhance information sharing within the group,and polymerized all user recommendation result of the group.Finally,simulation results show that the method proposed in this paper can effectively improve the accuracy of the recommendation,and it is more effective than traditional collaborative filtering algorithm.
作者 张峻玮 杨洲
出处 《计算机科学》 CSCD 北大核心 2014年第12期176-178,共3页 Computer Science
基金 国家自然科学基金项目(71272144)资助
关键词 推荐系统 协同过滤 层次聚类算法 组推荐 用户推荐 Recommendation systems Collaborative filtering K-means algorithm Group recommended
  • 相关文献

参考文献15

  • 1Sarwar B, KarypisG, KonstanJ. Analysis of recommendational gorithms for e-commerce[C]//Proceedings of the 2nd ACM conference on Electronic commerce. ACM Press, 2000:158-167.
  • 2Pham M C,Cao Y, Klamma R. A Clustering Approach for Col- laborative Filtering Recommendation Using Social Network A nalysis [J ]. Journal of Universal Computer Science, 2011,17 (4) : 583-604.
  • 3Harper F M, Sen S, Frankowski D. Supporting social recommen- dations with activity-balanced clustering. [C] // Proceedings of the ACM Recommender System conference. ACM, 2007:165-168.
  • 4Massa P, Avesani P. Trust-aware Collaborative Filtering for Recommender Systems[C]//Proceedings of Federated Interna- tional Conference on Move to Meaningful Internet. Springer, 2004:492-508.
  • 5Massa P, Avesani P. Trust-aware Recommender Systems[C]// Proceedings of the 2007 ACM Conference on Recommender sys tems. ACM, 2007 : 17-24.
  • 6Chowdhury M, Thomo A. Trust Based Infinitesimals for En- hanced Collaborative Fihering[C]//Proceedings of the 15th In- ternational Conference on Management of Data. Computer So- ciety of India, 2009.
  • 7Sun D, Zhou T, Liu J. Information filtering based on transferring similarity[J]. Physical Review E, 2009,80 ( 1 ) : 173-177.
  • 8Gurrin, He C A,Kazai Y A. A Performance Prediction Approach to Enhance Collaborative Filtering Performance [ C]//Procee dings of European Conference on Information Retrieval. Spring- er,2010:382-393.
  • 9Breese J S, Heckerman D, Kadie C. Empirical analysis of predic- rive algorithms for collaborative filtering[C]//Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelli- gence. ACM, 1998 : 43-52.
  • 10McFee B, Barrington L, Lanckriet G. Learning Similarity from Collaborative Filters[C]//Proceedings of the International So ciety of Music Information Retrieval Conference. ACM, 2010: 345-350.

二级参考文献141

  • 1陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 2Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 3Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 4Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 5Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 6Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 7Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html
  • 8Adomavicius G, Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 9Resnick P, Varian HR. Recommender systems. Communications of the ACM, 1997,40(3):56-58.
  • 10Balabanovic M, Shoham Y. Fab: Content-Based, collaborative recommendation. Communications of the ACM, 1997,40(3):66-72.

共引文献851

同被引文献164

引证文献14

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部