期刊文献+

混合高斯参数估计的两种EM算法比较 被引量:6

Comparison of two EM algorithms for Gaussian mixture parameter estimation
下载PDF
导出
摘要 混合高斯模型是一种典型的非高斯概率密度模型,获得广泛应用。其参数的优效估计可以通过最大似然方法获得,但最大似然估计往往因其非线性而难以实现,故期望最大化(Expectation-Maximization,EM)迭代算法成为一种常用的替代方法。常规EM算法性能受迭代初值设置影响大,且不能对模型阶数做出估计。一种名为贪婪EM的改进算法可以克服这两个缺点,获得更为准确的模型参数估计,但其运算量一般会远大于前者。本文对这两种EM算法进行综合研究,深入挖掘两者之间的关系,并基于相同的数值仿真实例,直观地演示比较两者的性能差异。 Gaussian mixture is a typical and widely-used non-Gaussian probability density distribution model. The expectation-maximization algorithm is a usual iterative realization for the maximum likelihood estimation of its para-meters. However, its performance depends highly on the initial values. And it can not estimate the order of Gaussian mixture. The greedy expectation-maximization algorithm can solve these problems by incrementally adding Gaussian components to the mixture. But its operation quantity is often much larger than the former. The relationship between these two algorithms is discussed, and their concrete realization methods are given comparatively. With the same nu-merical instance, their performance differences are illustrated and studied.
出处 《声学技术》 CSCD 2014年第6期539-543,共5页 Technical Acoustics
基金 国家自然科学基金资助项目(51109218)
关键词 混合高斯 最大似然估计 期望最大化 贪婪期望最大化 Gaussian mixture Maximum Likelihood Esfimafion(MLE) Expectation-Maximization(EM) Greedy Expectation-Maximization(GEM)
  • 相关文献

参考文献7

二级参考文献15

  • 1蔡坤宝,王成良,陈曾汉.产生标准高斯白噪声序列的方法[J].中国电机工程学报,2004,24(12):207-211. 被引量:15
  • 2王平波,张明敏,沈德刚.三元组拖线阵声纳宽带最佳阵处理左右舷判别性能的仿真研究[J].信号处理,2006,22(4):554-558. 被引量:4
  • 3王平波,蔡志明,姜可宇.混合高斯有色数据的生成方法[J].声学与电子工程,2007(1):7-11. 被引量:3
  • 4Shawn M Verbout,James M Ooi,Jeffrey T Ludwig,Alan V Oppenheim.Parameter esitmation for autoreg-ressive Gaussian-mixture processes:the EMAX algori-thm[J].IEEE Transactions on Signal Processing,1998:4i(10):2744-2756.
  • 5Dempster A P,Laird N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm[J].Roy Statist Soc,1977,39:1-38.
  • 6Verbeek J J,Vlassis N,Krose B.Efficient greedy learning of gaussian mixture models[R].The Netherlands:Computer Science Institute,University of Amsterdam,2001.
  • 7Render R A,Walker H F.Mixture densities,maximum likelihood and the EM algorithm[J].SIAM Review,1984,26(2):195-239.
  • 8Nikos Vlassis Aristidis Likas.A greedy EM algorithm for Gaussian mixture learning[J].Neural Processing Letters,2000,15 (1):77-87.
  • 9Shawn M Verbout,James M Ooi,Jeffrey T Ludwig,Alan V Oppenheim.Parameter esitmation for autoreg-ressive Gaussian-mixture processes:the EMAX algori-thm[J].IEEE Transactions on Signal Processing,1998,46(10):2744-2756.
  • 10Serena M Zabin,H Vincent Poor.Efficient estimation of Class A noise parameters via the EM algorithm[J].IEEE Transactions on Information Theory,1991:37(1):60-72.

共引文献25

同被引文献47

引证文献6

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部