期刊文献+

观测器具有时滞的树形弦网络的适定性

Well- posedness of the tree- shaped networkwith delays in observers
下载PDF
导出
摘要 主要研究的是树形波网络系统,该系统是由三根不同的弦组成.首先,通过选择适当空间,对网络的两个外部节点处施加控制和放置同位观测器,且观测器带有时滞.将系统方程转化为抽象线性系统的形式,利用对偶性原理和能量乘子法分别验证控制算子和观测算子都是允许的.再求出直接传输算子,说明系统的正则性和适定性.最后,利用所得结果还得到了观测有时滞的系统的适定性. We discuss the tree- shaped network. This network has three different strings. At first,By choosing the suitable state space,in which the controls are imposed on two external vertexes with collocated observers.The system equation is transformed into an abstract linear system. By the methods of energy multiplier and the dual principle,the admissbility of observation operator and control operator are obtained. Then,the feedthrough operator is further got,which shows that the system is regular. At last,using the results in this note,the wellposed- ness of the system with delays in observers is also obtained.
作者 金雪莲
出处 《渤海大学学报(自然科学版)》 CAS 2014年第4期313-319,共7页 Journal of Bohai University:Natural Science Edition
基金 国家自然科学基金资助项目(No:11201037)
关键词 树形波网络 传递函数 时滞 适定性 tree-shaped network transfer function delay wellposed-ness
  • 相关文献

参考文献13

  • 1Liu K S,Huang F L,Chen G.Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage[J].SIAM Journal on Control and Optimization,1989,49(6):1694-1707.
  • 2Dager R.Observation and control of vibrations in tree-shaped networks of strings[J].SIAM Journal on Cortrol and Optimization,2005,43(2):590-623.
  • 3Schmidt E J.On the modelling and exact controllability of net-works of vibrating strings[J].SIAM Journal on Cortrol and Optimization,1992,30:229-245.
  • 4郑福,白乙拉,朱广田.无穷网络流的顶点控制[J].控制理论与应用,2010,27(8):1103-1107. 被引量:1
  • 5王雷,许跟起.双回路复杂波网络的镇定[J].控制理论与应用,2011,28(6):759-762. 被引量:2
  • 6张雅轩,许跟起.复杂微分网络的指数稳定性[J].系统科学与数学,2009,29(10):1399-1418. 被引量:2
  • 7Zhang Y X and Xu G Q.Exponential and super stability of a wave network[J].Acta Appl.Math.,2013,124:19-41.
  • 8Han z J,XU G Q.Output feedback stabilisation of a tree-shaped network of vibrating strings with non-collocated observation[J].International Journal of Control,2011,84(3):458-475.
  • 9Guo B Z,Xu C Z,Hammouri H.Output feedback stabilization of a one-dimensional wave equation with an arbitrary time delay in boundary observation[J].ESAIM:Control,Optimization and Calculus of Variations XVII,122,2012,18:22-35.
  • 10Ervedoza S,Zuazua E.On the numerical approximation of exact controls for waves[M].Springer Briefs in Mathematics,2013.

二级参考文献53

  • 1Lagnese J, Leugering G, Schimdt E J. Modeling, Analysis of Dynamic Elastic Multi-Lind Structures. Birkhauser: Boston, 1994.
  • 2Liu K S, Huang F L and Chen G. Exponential stability analysis of a long chain of coupled vibrating strings with dissipative linkage. SIAM Appl. Math., 1989, 49(6): 1694-1707.
  • 3Dager R and Zuazua E. Controllability of star-shaped networks of strings. C. R. Acad. Sci. Paris Ser. I., 2001, 332(7): 621-626.
  • 4Dager R and Zuazua E. Controllability of tree-shaped networks of strings. C. R. Acad. Sci. Paris Set. I., 2001, 332(12): 1087-1092.
  • 5Dager R. Observation and control of vibrations in tree-shaped networks of strings. SIAM J. Control, 2004, 43:590-623.
  • 6Schmidt E J. On the modeling and exact controllability of networks of vibrating strings. SIAM J. Control Optim., 1992, 30:229-245.
  • 7Xu G Q, Guo B Z. Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation. SIAM J. Control Optim., 2003, 42(3): 966-984.
  • 8Xu G Q. Stabilization of string system with linear boundary feedback. Nonlinear Analysis: Hybrid Systems, 2007, 1: 383-397.
  • 9Xu G Q, Liu D Y, Liu Y Q. Abstract second order hyperbolic system and applications to controlled network of strings. SIAM J. Control Optim., 2008, 47(4): 1762-1784.
  • 10Guo B Z, Xie Y A. Sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks. SIAM J. Control Optim., 2004, 43(4): 1234-1252.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部