期刊文献+

严格对角占优M-矩阵A的|A^(-1)|_∞上界估计式的改进 被引量:20

The improved upper bound estimation of |A^(-1)|_∞ for strictly diagonally dominant M-matrices
原文传递
导出
摘要 利用严格对角占优M-矩阵A的逆矩阵A-1的非主对角元素上界的估计式,给出了|A(-1)|∞上界估计式的改进.证明了所得估计式改进了几个现有文献的结果,并用数值算例进行了说明. Several improved upper bounds of |A^-1|_∞ are given for strictly diagonally dominant M-matrixby using the upper bound estimations of non main diagonal elements for the inverse matrix A^-1 of matrix A, and we prove that the estimators improve some results of existing literatures, and it is illustrated with numerical examples.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第1期5-8,共4页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(11261049) 云南省教育厅科学研究基金(2013Y585) 文山学院重点学科数学建设项目(12WSXK01)
关键词 弱链对角占优 严格对角占优 M-矩阵 范数 上界 weakly chained diagonally dominant matrix strictly diagonally dominant matrix M- matrix Norm upper bound
  • 相关文献

参考文献12

  • 1VARAHJ M.A lower bound for the smallest singular value of a matrix [ J ] .Linear Algebra Appl, 1975,11:3-5.
  • 2LI W. On Nekrasov matrices [ J ]. Linear Algebra Appl, 1998,28 : 187-86.
  • 3LI Y T,CHEN F B,WANG D F.New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse [ J ].Linear Algebra Appl, 2009,430:1 423-1 431.
  • 4NENAD M.Upper bounds for the infinity norm of the inverse of SDD and S-SDD matrices[ J] .Journal of Computational and Applied Mathematics, 2007,206: 666-678.
  • 5LI W.The infinity norm bound for the inverse of nonsingular diagonal dominant matrices [ J ]. Applied Mathematics Letters, 2008,21 : 258-263.
  • 6CHENG G L, HUANG T Z.An upper bound for A-1of strictly diagonally dominant M-matrices[ J] .Linear Algebra Appl, 2007,426:667-673.
  • 7WANG P. An upper bound for A- 1 of strictly diagonally dominant M- matriees [ J ]. Linear Algebra Appl, 2009,431 : 511 - 517.
  • 8王亚强,李耀堂,孙小军,李艳艳.严格对角占优M-矩阵的‖A^(-1)‖_∞上界的一个新的估计式(英文)[J].山东大学学报(理学版),2010,45(4):43-47. 被引量:10
  • 9杨晓英,曾宝国,朱清溢,刘新.严格对角占优M-矩阵A的‖A^(-1)‖_∞上界的新估计式[J].湖南师范大学自然科学学报,2014,37(3):91-94. 被引量:8
  • 10HUANG T Z, ZHU Y. Estimation of for weakly chained diagonally dominant M- matrix [ J ]. Linear Algebra Appl. 2010,431 : 670-677.

二级参考文献45

  • 1逄明贤.局部双对角占优矩阵及应用[J].数学学报(中文版),1995,38(4):442-450. 被引量:22
  • 2黄廷祝,杨传胜.特殊矩阵分析及应用[M].北京:科学出版社,2003.
  • 3HORN R, JOHNSON C R, Topics in matrix analysis[M]. New York:Cambridge University Press, 1991.
  • 4JOHNSON C R. A Hadamard product involving M-matrix[J]. Linear and Multilintar Algebra, 1997, 4:261-264.
  • 5FIEDLER M, JOHNSON C R, MARKHAM T L, et al. A trace inequality for M-matrices and the symmetrizability of a real matrix by a positive diagonal matrix[J]. Linear Algebra Appl, 1988, 102:1-8.
  • 6SHIVAKUMAR P N, WILLIAMS Joseph, YE Qiang, et al. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics [J]. SIAM J Matrix Anal Appl, 1996, 17 (2) :298-312.
  • 7CHENG G H, HUANG T Z. An upper bound for Ⅱ A^-1 Ⅱ - of strictly diagonally dominant M-matrices[J]. Linear Algebra Appl, 2007, 426:667-673.
  • 8WANG P. An upper bound for Ⅱ A^-1 Ⅱ∞ of strictly diagonally dominant M-matrices[J]. Linear Algebra Appl, 2009, 431 : 511-517.
  • 9BERMAN A, PLEMMONS R J. Nonnegative matrices in the mathematical sciences [M]. 3rd ed. New York: Academic Press, 1994.
  • 10SHIVAKUMAR P N, CHEW K H. A sufficient condition for nonvanishing of determinants[J]. Proc Amer Math Soc, 1974, 43:63-66.

共引文献26

同被引文献69

  • 1Varga R S. Matrix iterative analysis [M]. Berlin: Springer, 2000.
  • 2Varah J M. A lower bound for the smallest singular value of a matrix [J]. Linear Algebra and its Applications, 1975, 11: 3-5.
  • 3Varga R S. On Diagonal Dominance Arguments for Bounding IIA-111o [J]. Linear Algebra and its Applications, 1976, 14: 211-217.
  • 4Shivakumar P N, Williams J J, Ye Q, Marinov C.A. On two-sided bounds related to weakly diago- nally dominant M-matrices with application to digital circuit dynamics [J]. SIAM J. Matrix Anal. Appl., 1996, 17: 298-312.
  • 5Cheng G H, Huang T Z. An upper bound for /A-1 of strictly diagonally dominant M-matrices [J]. Linear Algebra Appl., 2007, 426: 667-673.
  • 6Wang P. An upper bound for A-1 o of strictly diagonally dominant M-matrices [J]. Linear Algebra Appl., 2009, 431: 511-517.
  • 7Huang T Z, Zhu Y. Estimation of IIA-111 for weakly chained diagonally dominant 2l-matrices [J]. Linear Algebra Appl., 2010, 432: 670-677.
  • 8Varga R S. Matrix herative Analysis ~M~. 2nd ed. Berlin: Springe>Verlag, 2000.
  • 9Varah ] M. A Lower Bound {or the Smallest Singular Value o{ a Matrix ~J~. Linear Algebra and Its Applications, 1975, 11(1): 3-5.
  • 10Shivakumar P N, Williams J J, YE Qiang, et al. On Two-Sided Bounds Related to Weakly Diagonally Dominant M-Matrices with Application to Digital Circuit Dynamics ~J~. SIAM Journal on Matrix Analysis and Applications, 1996, 17(2): 298-312.

引证文献20

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部