期刊文献+

基于人工势场法与入侵杂草法路径规划研究 被引量:16

Path Planning Research Based on Artificial Potential Field Method with Invasive Weed Method
下载PDF
导出
摘要 针对移动机器人路径规划研究中,移动机器人路径规划易陷入局部极小值,缺乏全局指导性及路径规划效率不高,甚至目的地不可达的问题,这里给出相应的研究方法。通过合理布局超声波探头位置,利用改进人工势场法进行移动机器人的路径规划;对移动机器人陷入局部极小值点的问题,采用入侵杂草算法在全局内有指导性的产生最优子目的地,并根据子目的地重新分配空间内的引力势,引导移动机器人摆脱"陷阱"。Matlab仿真实验表明,本文提出的路径规划算法不仅在一般环境中,而且在相对复杂的环也能引导陷入局部极小值点的移动机准确、安全到达指定目的地。为此算法主要参数选取匹配合理时,可对路径进行优化。该算法在解决局部极小值点的问题具有较高全局指导性。 This paper focuses on problems that mobile robot path planning is easy to fall into local minimum, the path planning lacks overall guidance and its efficiency is not high, and even destination can not be reached in the mobile study of robot path planning. Some appropriate research methods are presented in this paper. We presents a new mobile robot path planning program based on improved artificial potential field through the reasonable layout of ultrasonic probe. For the problem that mobile robot falls into local minimum, we use Invasive Weed Optimization to generate the sub-destination in the global scope, reallocate the gravitational potential in the space according to sub-destination and guide mobile robots to get rid of“trap”. Matlab simulation results show that the proposed path planning algorithm can make the mobile robot which falls into local minimum point reach the destination correctly and safely both in the general environment and in the relatively complex environment. When the main matched parameters of the algorithm are selected, the route can be optimized. This algorithm to solve the problem of local minimum has higher overall guidance.
出处 《控制工程》 CSCD 北大核心 2015年第1期38-44,共7页 Control Engineering of China
基金 住建部课题(2012-K8-33) 住建部课题(2013-K1-48) 国家自然科学基金(11142191)
关键词 移动机器人 路径规划 改进人工势场法 入侵杂草法 mobile robot path planning improved artificial potential field invasive weed optimization
  • 相关文献

参考文献20

  • 1X. X. He and L. T. Chen. Path planning based on grid-potential fields[C]. Wu han:Proceedings of International Conference on Computer Science and Sottware Engineering,2008.
  • 2Bagherinasab A, Zadehbagheri M, Khalid S A, et al. Optimal Placementof D-STATCOM Using Hybrid Genetic and Ant Colony Algorithm to Losses Reduction[J]. International Journal of Applied Power Engineering (IJAPE), 2013, 2(2): 53-60.
  • 3C. C. Tsai, H. C. Huang and C. K. Chan. Parallel elite genetic algorithm and its application to global path planning for autonomous robot navigation[J]. IEEE Transaction on Industrial Electronics, 2011, 58(10): 4813-4821.
  • 4于振中,闫继宏,赵杰,陈志峰,朱延河.改进人工势场法的移动机器人路径规划[J].哈尔滨工业大学学报,2011,43(1):50-55. 被引量:120
  • 5Lee,J(Lee,Jinseok),Nam,Y(Nam, Yunyotmg),Hong,S(Hong, Sang, in), Cho,W(Cho,Weduke) . New Potential Function swith Random Force Algor-ithros Using Potential Field Method[J].Journal of Intelligent & Robotic Systems,2012,66 (3):303 -319.
  • 6Cummings M L,Marquez J J,Roy N.Human-automated path planning optimization and disicion :pport[J]. Human-Computer Studies,2012, 70(2):116-128.
  • 7张氢,陈丹丹,秦仙蓉,高倩.杂草算法收敛性分析及其在工程中的应用[J].同济大学学报(自然科学版),2010,38(11):1689-1693. 被引量:30
  • 8苏守宝,汪继文,张铃,方杰,李付鹏.一种约束工程设计问题的入侵性杂草优化算法(英文)[J].中国科学技术大学学报,2009,39(8):885-893. 被引量:19
  • 9Ant Colony Optimization and Swarm Intelligence: 5th International Workshop, ANTS 2006, Brussels, Belgium, September 4-7, 2006,Proceedings[M]. Springer, 2006.
  • 10Gao P, Tan Y J, Li J F, et al. An Ant Colony Algorithm for Remote Satellite and Ground Integration Scheduling Problem in Parallel Environment[J]. Advanced Materials Research, 2013, 791: 1341-1346.

二级参考文献29

  • 1周浦城,洪炳镕,杨敬辉.基于混沌遗传算法的移动机器人路径规划方法[J].哈尔滨工业大学学报,2004,36(7):880-883. 被引量:11
  • 2况菲,王耀南.基于混合人工势场-遗传算法的移动机器人路径规划仿真研究[J].系统仿真学报,2006,18(3):774-777. 被引量:43
  • 3张建英,赵志萍,刘暾.基于人工势场法的机器人路径规划[J].哈尔滨工业大学学报,2006,38(8):1306-1309. 被引量:83
  • 4陈立彬,尤波.基于改进人工势场法的机器人动态追踪与避障[J].自动化技术与应用,2007,26(4):8-10. 被引量:15
  • 5Papalambros P Y. The optimization paradigm in engineering design: promises and challenges [J].Computer-Aided Design, 2002, 34 (12):939-951.
  • 6Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics Engineering, 2000, 186 (2-4): 311-338.
  • 7Herskovits J, Mappa P, Goulart E, et al. Mathematical programming models and algorithms for engineering design optimization[J]. Computer Methods in Applied Mechanics Engineering, 2005, 194 (30- 33): 3 244-3 288.
  • 8Lee K S, Geem Z W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice[J].Computer Methods in Applied Mechanics Engineering, 2005, 194 (36-38): 3 902-3 933.
  • 9Hu X H, Eberhart R C, Shi Y H. Engineering optimization with particle swarrn[C]// Proceedings of the 2003 IEEE on Swarm Intelligence Symposium. Indianapolis.. IEEE Neural Networks Society, 2003 : 53-57.
  • 10Coelho L D S, Mariani V C. Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization [J]. Expert Systems with Applications, 2008, 34(3): 1 905-1 913.

共引文献158

同被引文献140

引证文献16

二级引证文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部