期刊文献+

乙醇水蒸气重整制氢模拟研究

Simulation of steam reforming of ethanol for hydrogen production
下载PDF
导出
摘要 利用Aspen Plus对乙醇水蒸气重整进行模拟,分析了影响乙醇水蒸气重整制氢反应的主要因素:压力、温度、水醇比。结果显示,压力升高,H2产率降低,CO2、CH4产率变化较小,其较理想反应压力为常压;温度升高,H2、CO产率增加,当温度为350℃-650℃时,H2的增长速率较快,而当温度达到650℃以上时,H2产率基本不变;水/醇的物质的量比增加,有利于乙醇转化,综合考虑能耗等因素其较优水醇比为7左右。在选定的反应条件650℃、0.1MPa、水/醇的物质的量比为7,CO2吸收塔板数18,塔顶压力0.6MPa,所得产品气可燃性气体物质的量分数为92.914%,其中H2为82.156%。 Steam reforming of ethanol was simulated by Aspen Plus, and the key factors (pressure, temperature and mole ratio of water to ethanol) which influenced the reforming of ethanol for hydrogen production were analyzed. Results revealed that the increase of pressure could lead a decrease of H2 yield while the yields of CO2 and CH4 were little affected; the increase of temperature could enhance the yields of H2 and CO, and the yield of H2 had a rapid increase from 350℃ to 650℃ and tended to be stable at temperature of over 650℃; and the increase of of water/ethanol mole ratio was in favor of the conversion of ethanol, and the appropriate mole ratio of water to ethanol was about 7 based on the comprehensive consideration of various factors including the energy consumption. Under the optimized reaction conditions of 650℃, 0.1MPa and water/ethanol mole ratio of 7, and CO2 absorption column tray number of 18 and top pressure of the column of 0.8MPa, the mole fraction of combustible gas in the product gas was 92.914%, among which H2 occupied 82.156%.
出处 《天然气化工—C1化学与化工》 CAS CSCD 北大核心 2014年第6期70-72,共3页 Natural Gas Chemical Industry
关键词 乙醇 水蒸气重整 制氢 模拟 ethanol steam reforming hydrogen production simulation
  • 相关文献

参考文献7

  • 1Das D,Veziroglu T N.Hydrogen production by biological processes:A survey of literature[J].Hydrogen Energy,2001,26:13-28.
  • 2刘利平,李静,马晓建.乙醇水蒸气重整制氢反应机理及动力学研究进展[J].天然气化工—C1化学与化工,2013,38(1):78-83. 被引量:7
  • 3Maggio G,Freni S,Caballaro S.Light alcohols/methane fueled molten carbonate fuel cells:A comparative study[J].J Power Sources,1998,74:17-23.
  • 4刘鹏翔,刘源,叶季蕾.乙醇水蒸气重整催化剂的研究进展[J].世界科技研究与发展,2005,27(6):69-75. 被引量:9
  • 5Jindal T K,Pant K K,Patel M.Kinetic study of steam reforming of ethanol on Ni-based ceria-zirconia catalyst[J].Ind Eng Chem Res,2013,52:15763-15771.
  • 6Peela N R,Kunzru D.Steam reforming of ethanol in a microchannel reactor:Kinetic study and reactor simulation[J].Ind Eng Chem Res,2011,50:12881-12894.
  • 7孙兰义主编.化工流程模拟实训-AspenPlus教程[M].北京:化学工业出版社,2013.

二级参考文献62

  • 1孙杰,吴锋,邱新平,王国庆,朱文涛,陈实,陈立泉.燃料电池的氢源技术——乙醇重整制氢研究进展[J].电源技术,2004,28(7):452-457. 被引量:11
  • 2小泽昭弥.现代电化学[M].北京:化学工业出版社,1995.1-7.
  • 3Gray P G,Petch M I.Platinum Metals Rev,2000,44(3):108~11
  • 4Golunski S.Platinum Metals Rev,1998,42(1):2~7.
  • 5Edwards N,Ellis S R,Frost J C,Golunski S E,van Keulen A,Lindewald N G et al.J Power Sources,1998,71:123~8.
  • 6Carpenter I,Edwards N,Ellis S,Frost J,Golunski S,van Keulen N et al.SAE Tech Paper Ser,1999,1:1320
  • 7Gray P G,Frost J C.Energy Fuels,1998,12:1121~9.
  • 8Docter A,Lamm A.J Power Sources,1999,84:194~200.
  • 9Anca Faur Ghenciu.Current Opinion in Solid State and Materials Science,2002,6:389~399
  • 10Maggiog,Frenis,Cavallaros,et al[J].Power Sources,1998,74:17~23

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部