期刊文献+

电渗微泵的生理溶液渗透特性研究 被引量:4

Research on Osmosis of Electroosmotic Micropump for Physiological Solution
下载PDF
导出
摘要 介绍了一种电渗微泵的结构及其驱动原理,研究了其对不同生理溶液的渗透特性。模拟眼内房水引流装置,利用电渗微泵对三种生理溶液进行测试,通过改变电压,测试定量体积的溶液,记录时间得出相应流速,用Origin Proporable软件对数据拟合得出压电流速曲线,结果表明电压对液体流动速度的影响成正比。人眼可承受最大5 V电压,此时该测试微泵传输液体流量每分钟可达到十几微升,通过分析5 V以内微泵对溶液的渗透性能,结合正常眼内房水引流速度,确定合理的驱动电压设计值,这将对未来制作实际可用的房水引流装置和器件产生指导意义。 The structural and drive principle of a electroosmotic micropump was introduced in this paper,and its os-mosis for different physiological solution was investigated. By modeling the humor aquosus drainage system in eyes, the pump was used to test three physiological solution. By changing the supply voltage and recording the experimen-tal time for certain volume of solution,then the corresponding velocity of the flow can be calculated. The data was fitted to obtain the voltage-velocity curves by using Origin Proporable software. The conclusion shows that the voltage has a direct proportion with the velocity of flow. The velocity of the flow could reach to about ten microliter when the voltage is 5 V which is the maximum tolerable value in eyes of human. By analyzing the osmotic permea-bility of the pump within 5 V and combining the normal flow rate of aquosus drainage,the reasonable supply voltage can be designed accordingly which will be significant for making the practical aquosus drainage system and devices in the future.
出处 《传感技术学报》 CAS CSCD 北大核心 2014年第11期1447-1450,共4页 Chinese Journal of Sensors and Actuators
基金 中国博士后第54批面上项目(2013M540089)
关键词 微泵 电渗流 流体测试 渗透特性 micropump electroosmotic flow fluid test osmosis
  • 相关文献

参考文献12

  • 1Zeng S L, Chen C H, Mikkelsen J C, et al. Fabrication and Charac- terizatiort of Electroosmotic Micropumps [ J ]. Sensor and Actuators B,2001,79(2-3) : I07-114.
  • 2Junya Ogawa, Isaku Kanno, Hidetoshi Kotera, et al. Development of Liquid Pumping Devices Using Vibrating Microchannel Walls[J]. Sensor and Actuators A,2009,152(2) :211-218.
  • 3Dai Jie, Xu Diao, Khoo Boo Cheong, et al. Navier Stokes Simulations of Gas Flow in Microdeviees[ J]. Journal of Microme- chanics mad Microengineerlng, 2000,10 : 72 - 379.
  • 4Losey M W,Frebaugh S L. Design and Fabrication of Microfluidie Devices for Multiphase Mixing and Reaction [ J]. Journal of Micro- electromechanical Systems, 2002,11 : 709-717.
  • 5Haruki Chujo, Kiyoshi Matsumoto, Isao Shimoyama. A High Flow Rate Electroosmotic Pump with Small Channels in Parallel [ J ]. IEEE International Micro Electro Mechanical Systems Conference, 2003,19(23) :351-354.
  • 6Parashchenko M A, Filippov N S, Kirienko V V, et al. Electroos- motic Pump Based on Asymmetric Silicon Microchannel Membranes[ J . Optoelectronics, Instrumentation and Data Pro- eessing,2014,50(3) :315-322.
  • 7王蔚,田丽,鲍志勇,刘晓为,王喜莲,杨松涛.一种新型压电式双向无阀微泵的研制[J].传感技术学报,2006,19(05B):2018-2021. 被引量:12
  • 8Chcn Chuanhua, Juan G cropump [ J ]. Journal of Santiago. A Planar Electroosmotic Mi- cal System, 2002, 11 (6) :672-683.
  • 9Lee K, Ahna B, Fudanib E P. Design of Pressure-Driven Microfluidic Networks Using Electric Circuit Analogy [ J ]. Lab Chip ,2012,12(3) :515-545.
  • 10刘婷婷,高杨,李磊民,杨涛.电渗驱动微泵设计初探[J].传感技术学报,2008,21(2):219-221. 被引量:5

二级参考文献16

  • 1Smits J G. Piezoelectric Micropump with Three Valves Working Peristalticall[J].Sensors and Actuators. 1990, A21-A23:203-206.
  • 2Guo-Hua F, Eun S K. Piezoelectrically Actuated Dome-Shaped Diaphragm Micropump[J]. J. MEMS. 2005,14(2): 192-199.
  • 3Abdelgawad M, Hassan I, Esmail N, P. Phutthavong Numerical Investigation of Multistage Viscous Micropump Configurations[C]//Transactions of the ASME 2005,127: 734-742.
  • 4Zengerle R, Ulrich J, Kluge S, Richter M, Richter A. A Bi-Directional Silicon Micropump[J]. Sensors and Actuators.1995, A50:81-86.
  • 5Olsson A, Enoksson P, Stemme G and Steme E. Micromachined Flat- Walled Valveless Diffuser Pumps[J]. J. Micoelectromechanical systems. 1997,6(2) : 161-166.
  • 6Matsumoto S, Klein A, Maeda R. Development of Bi-Directional ValveLess Micropump for Liquid [J]. IEEE Proc.MEMS'99: 141-146.
  • 7Wijngaat W, Anderson H, Enoksson P, K Noren and G Stemme. The First Self-Priming and Bi Directional Valve-Less Diffuser Micropump for Both Liquid and Gas[C]//IEEE Proc. MEMS2000: 674-679.
  • 8Shunichi H, Kusunoki H, Yasuhisa F. New Bi-Directional Valve-Less Silicon Micro Pump Controlled by Driving Wawform[C]//2002, IEEE 0-7803-7185-2/02 : 113-116.
  • 9刘小明,朱钟淦.微机电系统设计与制造[M].国防工业出版社,2005.
  • 10Chen Chuan-Hua,Juan G.Santiago.A Planar Electroosmotic Micropump[J].Journal of Microelectromechanical System,11(6):672-683,2002.

共引文献15

同被引文献66

  • 1孟娜,任百超.青光眼房水引流装置的研究进展[J].国际眼科杂志,2005,5(4):715-718. 被引量:31
  • 2黎小平,张小平,王红伟.碳纤维的发展及其应用现状[J].高科技纤维与应用,2005,30(5):24-30. 被引量:99
  • 3刘国君,程光明,杨志刚.一种压电式精密输液微泵的试验研究[J].光学精密工程,2006,14(4):612-616. 被引量:18
  • 4沙菁,侯丽雅,章维一,朱丽.微流体系统驱动技术的研究进展[J].微纳电子技术,2006,43(12):586-591. 被引量:5
  • 5Kulwant S, Robin J, Soney V, et al. Fabrication of Electron Beam Physical Vapor Deposited Polysilicon Piezoresistive MEMS Pres- sure Sensor [J ]. Sensors and Actuators A, 2015,223 ( 1 ) : 151-158.
  • 6Huang C H,Tsou C. The Implementation of a Thermal Bubble Actu- ated Microfluidic Chip with Microvalve,Micropump and Micromixer [J ]. Sensors and Actuators A: Physical, 2014,210( 1 ) : 147-156.
  • 7Mirasoli M, Guardigli M, Michelini E, et al. Recent Advance- ments in Chemical Luminescence-Based Lab-on-Chip and Micro- fluidic Platforms for Bioanalysis [J]. Journal of Pharmaceutical and Biomedical Analysis, 2014,87 ( 1 ) : 36-52.
  • 8Ghanbarl M, Nezhad A S, Agudelo C G, et al. Microfluidic Posi- tioning of Pollen Grains in Lab-on-a-Chip for Single Cell Analysis [J]. Journal of Bioscience and Bioengineering, 2014, 117 (4) : 504-511.
  • 9Haeberle S, Zengerle R, Mierofluidie Platforms for Lab-on-a-Chip Applications[J]. Lab on a Chip,2007,7(9) : 1094-1110.
  • 10Feng G H, Kim E S, Micropump Based on PZT Unimorph and One-Way Parylene Valves I J]. Journal of mieromeehnies and mi- eroengineering, 2004,14( 3 ) : 429-435.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部