期刊文献+

一种基于Taylor和Kalman的室内协同定位方法 被引量:17

An Cooperative Localization Method Based on Taylor and Kalman Algorithms
下载PDF
导出
摘要 结合Chan算法、Taylor算法及Kalman算法三种TDOA算法的优点,提出一种能应用于室内实时定位的协同方法。首先基于Chan与Taylor的协同定位方法估算位置信息,并通过对估计结果的残差设置阈值来鉴别NLOS,从而抛弃受到NLOS污染严重的测量数据。其次,再对符合条件的测量数据,利用Kalman方法计算定位结果,与Taylor方法的定位结果通过设置判别条件进行比较,以此进一步抑制NLOS干扰。对符合判别条件的定位结果,进行残差加权及移动平均加权处理,从而完成最终定位结果的更新。最后,利用室内实时定位实验,证明该方法能有效过滤受到NLOS污染严重的测距数据,提高定位精度,并且具有良好的稳定性。 A cooperative method for indoor real-time localization based on three TDOA algorithms is presented. These algorithms are Chan algorithm, Taylor serials expansion algorithm, and Extended Kalman filter algorithm. Firstly,estimation result is calculated by a cooperative method based on Chan and Taylor and threshold value of its residuals is set to identity NLOS and discard the ranging data that is disturbed severely by NLOS. Then,Kalman method is used for the matching data to get estimation position. The location result of Kalman is compared with the result of Taylor through setting some condition to further restrain NLOS error. Next,the final estimation result is ob-tained,by using residual weighting algorithm and moving weighted average method to the meet results. Finally,the experimental results show that this method can restrain NLOS error efficiently and improve the precision of location.
出处 《传感技术学报》 CAS CSCD 北大核心 2014年第11期1557-1561,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61374005) 浙江省重大科技专项项目(2011R09019-01)
关键词 室内定位 协同方法 Taylor算法 KALMAN算法 残差加权 indoor localization cooperative method Taylor algorithm Kalman algorithm residual weighting
  • 相关文献

参考文献14

  • 1彭宇,王丹.无线传感器网络定位技术综述[J].电子测量与仪器学报,2011,25(5):389-399. 被引量:231
  • 2Fang B T. Simple Solutions for Hyperbolic and Related Position Fi- xes[ J]. IEEE Trans on Aerospace and Electronic Systems, 1990, 26(5) :748-753.
  • 3Chan Y T, Ho K C. A Simple and Efficient Estimator for Hyperbolic Location [ J ]. Signal Processing, IEEE Transactions, 1994,42(8) : 1905-1915.
  • 4Foy W H. Position-Location Solutions by Taylor Series Estimation[ J ]. IEEE Trans Aerosp Electron Syst, 1976,12 (2) : 187-194.
  • 5Najar M, Vidal J. Kalman Tracking Based on TDOA for UMTS Mobile Location [ C ]//Proc IEEE Int Symp Personal, Indoor and Mobile Radio Communication (PIMRC). San Diego, CA,2001 : B45- B49.
  • 6陈桂忠,董利达,兰守珍.一种在非视距环境中的移动节点定位方法[J].浙江大学学报(理学版),2009,36(1):52-56. 被引量:9
  • 7Ho K C. Bias Reduction for an Explicit Solution of Source Locali- zation Using TDOA [ J ]. IEEE Transactions on Signal Processing, 2012,60(5) :2101-2114.
  • 8Kovavisaruch L, Ho K C. Modified Taylor-Series Method for Source and Receiver Localization Using TDOA Measurements with Errone- ous Receiver Positions [ C ]//Proc of IEEE International Symposium on Circuits and Systems (ISCAS). IEEE Press, 2005 : 2295-2298.
  • 9Rullan-Lara J, Salazar S, Lozano H. UAV Real-Time Location Using a Wireless Sensor Network [ C ]//Proc of IEEE Positioning Navigation and Communication ( WPNC ). Dresden, German : IEEE Press, 2011 : 18-23.
  • 10Chiang ChcngTse, Tseng PoHsuan, Feng KaiTen. Hybrid Unified Kalman Tracking Algorithms for Heterogeneous Wireless Location Systems [ J ]. IEEE Transactions on Vehicular Technology, 2012,61 (2) :702-715.

二级参考文献52

  • 1蒋林,闫继宏,臧希喆,赵杰.一种新的超声波绝对定位方法[J].吉林大学学报(工学版),2009,39(1):188-193. 被引量:13
  • 2王文生,齐广学,温淑慧,冯波.一种高精度超声测距方法的研究[J].传感技术学报,2002,15(3):219-221. 被引量:12
  • 3杨冕,秦前清.对传感器网络定位技术现状的研究[J].微机发展,2005,15(3):26-28. 被引量:15
  • 4王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:673
  • 5KUO-FENG S, CHIA-HO O, JIAU H C. Localization with mobile anchor points in wireless sensor networks[J]. IEEE Transactions on Vehicular Technology,2005,54(3) :1187-]197.
  • 6DU X, LIN F. Improving sensor network performance by deploying mobile sensors[C]//The 24th IEEE International Performance, Computing, and Communications Conference(IPCCC 2005). Phoenix, USA: IEEE Press, 2005 : 67-71.
  • 7PRIYANTHA N B, CHAKRABORTY A, BAL- AKRISHNAN H. The cricket location-support system[C]//Proceedings of the 6th Annual International Conference on Mobile Computing and Networking. Boston, USA: ACM Press,2000:32 -43.
  • 8NICULESCU D, NATH B. Ad hoc positioning system (APS) using AOA[C]//Proceedings of the 22th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2003). San Francisco, USA: IEEE Press,2003 : 1734-1743.
  • 9BAHL P, PADMANABHAN V N. RADAR: an inbuilding RF-based user location and tracking system [C]//Proceedings of the 9th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2000). Israel: IEEE Computer Society,2000: 775-784.
  • 10LUO R C, OGST C, PAN S H. Mobile user localization in wireless sensor network using grey prediction method[C]//The 32nd Annual Conference of IEEE Industrial Electronics Society ( IECON 2005 ). Raleigh, USA : IEEE Press,2005:2680-2685.

共引文献305

同被引文献130

  • 1刘春红,陆萍萍.基于Chan氏算法和最近邻居算法的协同定位方法[J].无线通信技术,2012,21(3):8-11. 被引量:1
  • 2玄文启.基于无线局域网的超宽带技术应用研究[J].中国科技信息,2006(03A):38-38. 被引量:3
  • 3李江华,李龙文,刘瑶.一种混合定位算法线性化处理的抗NLOS的WLS算法[J].系统工程与电子技术,2007,29(5):816-819. 被引量:3
  • 4楚政,谢飞.超宽带无线通信技术的发展[J].电信科学,2007,23(11):10-13. 被引量:7
  • 5Li Y,Qian Z,Zhao S,et al.A Research of TOA wireless sensor network localization algorithm. Advanced Materials Research . 2013
  • 6Simonetto A,Leus G.Distributed Maximum Likelihood Sensor Network Localization. IEEE Transactions on Signal Processing . 2014
  • 7Foy WH.Position-location solutions by Taylor-series estimation. IEEE Transactions on Aerospace and Electronic Systems . 1976
  • 8So, Hing Cheung,Lin, Lanxin.Linear least squares approach for accurate received signal strength based source localization. IEEE Transactions on Signal Processing . 2011
  • 9Zhang, X F,Liu, H Y.??Efficient Implementation of Distributed Maximum Likelihood Estimation Method in Clustered Wireless Sensor Networks(J)Sensors & Transducers . 2013 (10)
  • 10Lanxin Lin,H.C. So,Frankie K.W. Chan,Y.T. Chan,K.C. Ho.??A new constrained weighted least squares algorithm for TDOA-based localization(J)Signal Processing . 2013 (11)

引证文献17

二级引证文献173

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部