期刊文献+

基于1mm精度路面三维图像的裂缝种子自动识别算法 被引量:9

Automatic Recognition Algorithm for Crack Seeds Based on 1mm Resolution 3DPavement Images
原文传递
导出
摘要 为了准确地检测路面裂缝,给路面养护管理、路面性能评价与预测、路面结构和材料设计提供参考,基于1mm·像素-1的路面三维图像对裂缝自动识别进行研究。首先,将源图像划分为8像素×8像素的子块以降低图像维度;其次,根据深度验证和对称性检测将8像素×8像素的图像子块识别为裂缝子块(即裂缝种子)或非裂缝子块;然后,根据深度和方向相似性连接裂缝片段;最后,设计去噪算法消除孤立噪声,获得裂缝图像。结果表明:所提出的算法具有较高的准确率(均值92.75%)、召回率(均值58.93%)和运行速度(平均2~3s·张-1),以71.15%的F值优于Otsu分割,Canny边缘检测和另一种子识别算法。 In order to detect pavement cracking accurately and provide reference for pavement maintenance and management, pavement performance evaluation and prediction, and pavement structural and material design, the research on automatic pavement cracking recognition was conducted based on 1 mm per pixel 3D pavement images. Firstly, a source image was divided into blocks of 8 pixels × 8 pixels to reduce image size. Secondly, the image blocks of 8 pixels × 8 pixels were classified as crack blocks (crack seeds) or noncrack blocks according to grayscale verification and symmetry check. Then, the crack segments were joined on the basis of depth and direction proximity. Finally, a denoising algorithm was designed to remove noises so as to obtain the crack images. The results show that the proposed algorithm achieves relatively high precision (with an average of 92. 75%), recall rate (with an average of 58. 93%) and speed (with an average of 2-3 s per image). It outperforms Otsu segmentation, Canny edge detection and another seeds based approach, with an F score of 71.15%.
出处 《中国公路学报》 EI CAS CSCD 北大核心 2014年第12期23-32,共10页 China Journal of Highway and Transport
基金 国家自然科学基金项目(51108391) 中央高校基本科研业务费专项资金项目(A0920502051208-99)
关键词 道路工程 路面裂缝 识别算法 图像处理 对称性检测 裂缝种子 road engineering pavement crack recognition algorithm image processing symmetry check crack seed
  • 相关文献

参考文献24

  • 1FUKUHARA T,TERADA K, NAGAO M, et al. Au- tomatic Pavement-distress-survey System[J]. Journal of Transportation Engineering, 1990, 116 (3): 280- 286.
  • 2WANG K C P. Design and Implementations of Auto- mated Systems for Pavement Surface Distress Survey [J]. Journal of Infrastructure Systems, 2000,6 ( 1 ) : 24- 32.
  • 3WANG K C P, HOU Z, GONG W. Automated Road Sign Inventory System Based on Stereo Vision and Tracking[J]. Computer-aided Civil and Infrastructure Engineering, 2010,25 (6) : 468-477.
  • 4OTSU N. A Threshold Selection Method from Gray- level Histograms[J]. IEEE Transactions on Systems, Man and Cybernetics, 1979,9(1) :62-66.
  • 5王茜,彭中,刘莉.一种基于自适应阈值的图像分割算法[J].北京理工大学学报,2003,23(4):521-524. 被引量:76
  • 6TSAI Y C, KAUL V, MERSEREAU R M. Critical Assessment of Pavement Distress Segmentation Methods[J]. Journal of Transportation Engineering,2010,136(1) :11-19.
  • 7CANNY J. A Computational Approach to Edge Detec- tion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986(6) : 679-698.
  • 8王华,朱宁,王祁.应用计盒维数方法的路面裂缝图像分割[J].哈尔滨工业大学学报,2007,39(1):142-144. 被引量:18
  • 9张娟,沙爱民,孙朝云,高怀钢.基于相位编组法的路面裂缝自动识别[J].中国公路学报,2008,21(2):39-42. 被引量:41
  • 10梁世庆,孙波成,邱延峻.数学形态学路面裂缝识别算法研究[J].路基工程,2010(1):44-46. 被引量:14

二级参考文献66

共引文献200

同被引文献60

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部