期刊文献+

带优先级分类约束的决策树算法

Decision Tree for Priority Classification
下载PDF
导出
摘要 在与安全相关的流量管理中,对每类应用的关注度不同。针对带优先级约束的流量分类问题,设计了基于分支信息熵的决策树分类算法。实验结果表明,该算法整体准确率较高,并且各个分类的召回率与优先级约束一致。 Different attentions are paied to the applications in traffic management related to the net- work security. According to the traffic classification with restrain of priority, a decision tree algo- rithm is proposed based on the branch entropy. The experimental results demonstrate that the overall accuracy of the algorithm is high and the recall of the applications is in accordance with the priority.
出处 《信息工程大学学报》 2014年第6期737-742,共6页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(61309019) 国家863计划资助项目(201101A103 2011AA010603)
关键词 流量分类 机器学习 决策树 召回率 traffic classification machine learning decision tree recall
  • 相关文献

参考文献18

  • 1Dainotti A, Pescape A, Claffy K C. Issues and Future Directions in Traffic Classification[ J]. IEEE Network, 2012, 26( 1 ) : 35-40.
  • 2徐鹏,刘琼,林森.基于支持向量机的Internet流量分类研究[J].计算机研究与发展,2009,46(3):407-414. 被引量:59
  • 3鲁刚,张宏莉,叶麟.P2P流量识别[J].软件学报,2011,22(6):1281-1298. 被引量:48
  • 4McGregor A, Hall M, Lorier P, et al. Flow clustering using machine learning techniques[ C]//Proc. of Passive and Active Measurement Workshop. 2004:205-214.
  • 5Bernaille L, Teixeira R, Akodkenou I, et al. Traffic classification on the fly[J]. ACM Special Interest Group on Data Com- munication (SIGCOMM) Computer Communication Review, 2006, 36(2):23-26.
  • 6Zander S, Nguyen T, Armitage G. Automated traffic classification and application identification using machine learning[ C]// Prec. of 1EEE 30th Conference on Local Computer Networks. 2005:250-257.
  • 7Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms[ C ]/! Prec. of the 2006 SIGCOMM Workshop on Mining Network Data. 2006:281-286.
  • 8Erman J, Mahanti A, Arlitt M, et al. Identifying and discriminating between web and peer-to-peer traffic in the network core [ C]// Proc. of the international conference on World Wide Web. 2007:883-892.
  • 9Auld T, Moore A W, Gull S F. Bayesian neural networks for Internet traffic classification[ J]. IEEE Transactions on Neural Networks, 2007, 18( 1 ) :223-239.
  • 10Li W, Canini M, Moore A W, et al. Efficient application identification and the temporal and spatial stability of classification schema [ J ]. Computer Networks, 2009, 53 (6) :790-809.

二级参考文献77

  • 1赵咏,姚秋林,张志斌,郭莉,方滨兴.TPCAD:一种文本类多协议特征自动发现方法[J].通信学报,2009,30(S1):28-35. 被引量:10
  • 2李伟男,鄂跃鹏,葛敬国,钱华林.多模式匹配算法及硬件实现[J].软件学报,2006,17(12):2403-2415. 被引量:42
  • 3Madhukar A, Williamson C. A longitudinal study of P2P traffic classification [C]//Proc of the 14th IEEE Int Syrup on Modeling, Analysis, and Simulation. Washington, DC IEEE Computer Society, 2006:179-188
  • 4Moore A W, Papagiannaki K. Toward the accurate identification of network applications [G]//Dovrolis C. LNCS 3431: Proc of the PAM 2005. Heidelberg: Springer, 2005:41-54
  • 5Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark [C]//Proc of ACM SIGCOMM. New York: ACM, 2005.. 229-240
  • 6Roughan M, Sen S, Spatscheck O, et al. Class of service mapping for QoS: A statistical signature-hased approach to IP traffic classification [C]//Proc of ACM SIGCOMM Internet Measurement Conf 2004. New York: ACM, 2004: 135-148
  • 7Zuev D. Moore A W. Traffic classification using a statistical approach [G]//Dovrolis C. LNCS 3431: Proc of the PAM. Heidelberg, Germany: Springer, 2005:321-324
  • 8Moore A W, Zuev D. Internet traffic classification using Bayesian analysis techniques [C] //Proc of the 2005 ACM SIGMETRICS Int Conf on Measurement and Modeling of Computer Systems. New York: ACM, 2005: 50-60
  • 9Tan P N, Steinbach M, Kumar V. Introduction to Data Mining [M]. Boston: Addison Wesley, 2006
  • 10Moore A W, Zuev D, Crogan M. Discriminators for use in flow-based classification, RR-05-13 [R]. London: Queen Mary University of London, 2005

共引文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部