期刊文献+

基于依赖空间的变精度粗糙集属性约简 被引量:5

Attribute Reduction in Variable Precision Rough Set Based on Dependence Space
下载PDF
导出
摘要 针对求解变精度粗糙集模型属性约简问题,在对象集上定义一种上下近似二元关系.利用此关系建立属性集上的等价关系,由此构造出依赖空间,从而得到变精度粗糙集的上下近似协调集的判定定理.同时建立一种保持每个决策类的上下近似不变的属性约简方法.最后通过实例验证方法的有效性. To get the attribute reduction in variable precision rough set model, an upper and lower approximation binary relation is defined on object sets. By applying the binary relation, the equivalence relation is constructed on attribute sets and thus a dependence space is produced. Then, theorems for judging upper and lower approximation consistent sets are obtained. Meanwhile, a new attribute reduction method is proposed to preserve some invariant characters of upper and lower approximation in each decision class. Finally, a practical example illustrates the validity of the proposed method.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第12期1065-1070,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61379021 61303131) 福建省教育厅科技项目(No.JA12223)资助
关键词 变精度粗糙集 属性约简 二元关系 依赖空间 Variable Precision Rough Set, Attribute Reduction, Binary Relation, Dependence Space
  • 相关文献

参考文献14

  • 1Pawlak Z. Rough Sets. International Journal of Computer and Infor- mation Seienees, 1982, 11 (5) : 341-356.
  • 2苗夺谦,王珏.粗糙集理论中知识粗糙性与信息熵关系的讨论[J].模式识别与人工智能,1998,11(1):34-40. 被引量:138
  • 3Qian Y H, Liang J Y, Pedrycz W, et al. Positive Approximation: An Accelerator for Attribute Reduction in Rough Set Theory. Artifi- cial Intelligence, 2010, 174(9/10) : 597-618.
  • 4李进金.覆盖广义粗集理论中的拓扑学方法[J].模式识别与人工智能,2004,17(1):7-10. 被引量:48
  • 5Ziarko W. Variable Precision Rough Set Model. Journal of Computer and System Sciences, 1993, 46( 1 ) : 39-59.
  • 6刘瑞新,孙士保,秦克云.变精度覆盖粗糙集[J].计算机工程与应用,2008,44(12):47-50. 被引量:17
  • 7Zhang X Y, Mo Z W , Xiong F, et al. Comparative Study of Vari- able Precision Rough Set Model and Graded Rough Set Modal. In- ternational Journal of Approximate Reasoning, 2012, 53 (1) : 104- 116.
  • 8余鹰,苗夺谦,刘财辉,王磊.基于变精度粗糙集的KNN分类改进算法[J].模式识别与人工智能,2012,25(4):617-623. 被引量:32
  • 9Novo~" M. Dependence Spaces of Information Systems//Orlowska E S, ed. Incomplete Information: Rough Set Analysis. Berlin, Germany: Springer, 1998:193-246.
  • 10Leung Y, Ma J M, Zhang W X, et al. Dependence-Space-Based Attribute Reductions in Inconsistent Decision Information Systems.International Journal of Approximate Reasoning, 2008, 49 ( 3 ) : 623 -630.

二级参考文献59

共引文献304

同被引文献75

  • 1张贤勇,莫智文.变精度粗糙集[J].模式识别与人工智能,2004,17(2):151-155. 被引量:44
  • 2骆正山,李刚,王小完.基于变精度模型的平分互测动态约简粗糙集知识发现方法研究[J].西安科技大学学报,2005,25(3):383-387. 被引量:1
  • 3印勇,孙如英.基于模糊粗糙集的一种知识获取方法[J].重庆大学学报(自然科学版),2006,29(5):108-111. 被引量:4
  • 4Pawlak Z. Rough sets: theoretical aspects of reasoning about data [ M ]. Dordrecht : Kluwer Academic Publisher, 1991.
  • 5Ziarko W. Variable precision rough set model [ J ]. Journal of Com- puter and System Sciences,1993,46(93) :39-59.
  • 6Li Tianrui, Ruan Da, Geert W, et al. A rough sets based characteristic relation approach for dynamic attribute generalization in data mining [ J]. Knowledge-Based Systems,2007,20(5 ) :485-494.
  • 7Hu Qinghua, Yu Daren, Liu Jinfu, et al. Neighborhood rough set based heterogeneous feature subset selection [ J ]. Information Sciences, 2008,178 ( 18 ) : 3577- 3594.
  • 8Yang Xibei, Zhang Ming, Dou Huili, et al. Neighborhood systems- based rough sets in incomplete information system[ J]. Knowledge- Based Systems,2011,24(6) :858-867.
  • 9Zhang Junbo, Li Tianrui, Chen Hongmei. Composite rough sets [ M ]// Artificial Intelligence and Computational Intelligence. Berlin: Sprin- zer.2012 : 150-159.
  • 10Pawlak Z, Skowron A. Rough sets: some extensions [ J]. Information Sciences,2007,177( 1 ) :28-40.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部