期刊文献+

具有多形态种群协同进化的多目标优化算法 被引量:1

Co-evolutionary Multi-objective Optimization Algorithm with Polymorphous Populations
下载PDF
导出
摘要 为提高进化多目标优化算法在维持最优解多样性方面的性能,获得分布更均匀的Pareto非支配解集,文中提出一种具有多形态种群协同进化的多目标优化算法.该算法构建一种多形态种群协同进化架构,通过引入最小向量夹角的相似性度量方法,给出次优非支配个体选择策略,从而提高种群的多样性.算法还提出一种基于排序链表的拥挤个体删除策略,进一步提高解集分布的均匀性和宽广性.与经典算法对比结果表明,文中算法在解的分布性和多样性方面均有较好表现,尤其在解集分布均匀性方面优势较明显. To improve the diversity maintenance ability of evolutionary multi-objective optimization algorithms and obtain a set of better distributed non-dominated solutions, a co-evolutionary multi-objective optimization algorithm with polymorphous populations is proposed. Firstly, a co-evolutionary frame of polymorphous populations is designed. Next, by introducing the minimum vectorial angle which is capable of measuring the similarity between different Pareto-ranked solutions, a selection strategy for suboptimum non-dominated solutions is proposed to enhance the diversity of populations. Finally, a population removal strategy based on an ordered link-list is put forward. Thus, the uniformity and the spread of the solutions are improved. Compared with some typical algorithms, the proposed algorithm has good convergence and remains a better diversity and uniformity.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第12期1078-1088,共11页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61175123)资助
关键词 多目标优化 协同进化 多形态种群 向量夹角 排序链表 Multi-objective Optimization, Co-evolution, Polymorphous Population, Vectorial Angle,Ordered Link-List
  • 相关文献

参考文献26

  • 1公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. 被引量:399
  • 2Schaffer J D. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms // Proc of the 1 st International Conference on Genetic Algorithms. Pittsburgh, USA, 1985:93-100.
  • 3Fonseca C M, Fleming P J. Genetic Algorithms for Multiobjective Optimization : Formulation, Discussion and Generalization//Proc of the 5th International Conference on Genetic Algorithm. San Francis- co, USA: Morgan Kaufmann, 1993:416-423.
  • 4Srinivas N, Deb K. Multiobjective Optimization Using Nondomina- ted Sorting in Genetic Algorithms. Evolutionary Computation, 1994, 2(3) : 221-248.
  • 5Horn J, Nafpliotis N, Goldberg D E. A Niched Pareto Genetic Algo- rithm for Multiobjective Optimization// Proc of the 1 st IEEE Con- ference on Evolutionary Computation. Orlando, USA, 1994, I : 82- 87.
  • 6Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Muhiobjec- tire Genetic Algorithm: NSGA-II. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 7Nebro A J, Durillo J J, Garcia-Nieto J, et al. SMPSO : A New POS- Based Metaheuristic for Multi-objective Optimization//Proc of the IEEE Symposium on Computational Intelligence in Multi-criteria De- cision-Making. Nashville, USA, 2009 : 66-73.
  • 8Gong M G, Jiao L C, Du H F, et al. Multiobjective Immune Algo-rithm with Nondominated Neighbor-Based Selection. Evolutionary Computation, 2008, 16(2): 225-255.
  • 9Potter M A, de Jong K A. A Cooperative Coevolutionary Approach to Function Optimization//Proc of the 3rd Conference on Parallel Problem Solving from Nature. London, UK: Springer, 1994: 249- 257.
  • 10Tan K C, Yang Y J, Goh C K. A Distributed Cooperative Coevolu- tionary Algorithm for Muhiobjective Optimization. IEEE Trans on Evolutionary Computation, 2006, 10(5) : 527-549.

二级参考文献34

  • 1郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192. 被引量:52
  • 2Schaffer J D. Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms. Ph. D Dissertation. Nashville, USA: Vanderbilt University, 1984.
  • 3Fonseca C M, Fleming P J. Genetic Algorithm for Multi-Objective Optimization: Formulation, Discussion and Generation // Proc of the 5th International Conference on Genetic Algorithms. Urbana- Champaign, USA, 1993 : 416 -423.
  • 4Srinivas N, Deb K. Multi-Objective Optimization Using Non-Domi- nated Sorting in Genetic Algorithms. Evolutionary Computation, 1994, 2(3) : 221 -248.
  • 5Horn J, Nafpliotis N, Gold D E. A Niched Pareto Genetic Algorithm for Multiobjective Optimization// Proc of tile 1st IEEE Conference on Evolutionary Computation. Orlando, USA, 1994, I : 82 - 87.
  • 6Zitzler E, Thiele L. Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans on Evolutionary Computation, 1999, 3(4) : 257 -271.
  • 7Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report, 103. Zurich, Switzer- land: Swiss Federal Institute of Technology, 2001.
  • 8Knowles J D, Come D W. Approximating the Non-Dominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Compu- tation, 2000, 8(2): 149-172.
  • 9Come D W, Knowles J D, Oates M J. The Pareto-Envelope BasedSelection Algorithm for Multiobjective Optimization // Proc of the 6th International Conference on Parallel Problem Solving from Nature. Paris, France, 2000: 869- 878.
  • 10Come D W, Jerram N R, Knowles J D, et al. PESA- Ⅱ: Region- Based Selection in Evolutionary Multiobjective Optimization // Proc of the Genetic and Evolutionary Computation Conference. San Francisco, USA, 2001 : 283 -290.

共引文献402

同被引文献16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部