期刊文献+

基于量子少数者博弈的多机器人追捕

Multi-robot Pursuit Evasion Based on Quantum Minority Game
下载PDF
导出
摘要 多个带有自利因素的追捕机器人在追捕一个逃跑者的过程中,自身利益与整体利益之间会产生冲突,导致系统付出更多代价.若调整收益分配机制,并引入量子少数者博弈,则可将经典策略空间扩展到量子策略空间.在该空间下,追捕者追求自身利益最大化时,也能达到整体最优.通过对追捕过程中量子少数者博弈进行实验分析表明,采用量子策略的机器人,其自身利益与整体利益得到统一,追捕效率大幅度提高. When the conflict between interests of pursuers and the overall interests is generated in many-to-one pursuit, more price wilt be paid by the pursuit system. The classical strategy space can be extended to the range of quantum strategy space after adjusting the payoff distribution mechanism and introducing the quantum minority game. The global optimization can be achieved when robots maximize their own interests in this space. According to the experimental analysis of quantum minority game in the pursuit process, the individual and overall interests are unified, and the robots significantly improve the efficiency by quantum strategy.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第12期1117-1123,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61070131 61175051 61175033 61075076) 国家863计划项目(No.2012AA011005) 安徽省自然科学基金项目(No.1308085QF108)资助
关键词 多机器人追捕 量子少数者博弈 量子策略空间 纳什均衡 Multi-robot Pursuit Evasion, Quantum Minority Game, Quantum Strategy Space,Nash Equilibrium
  • 相关文献

参考文献10

  • 1Isaacs R. Differential Games: A Mathematical Theory with Applica- tions to Warfare and Pursuit, Control and Optimization. New York, USA: John Wiley & Sons, 1965.
  • 2Yamaguchi H, Arai T. Distributed and Autonomous Control Method for Generating Shape of Multiple Mobile Robot Group//Proc of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. Munich, Germany, 1994, II: 800-807.
  • 3周浦城,洪炳镕,王月海.动态环境下多机器人合作追捕研究[J].机器人,2005,27(4):289-295. 被引量:16
  • 4Esert J', Wilkens M, Lewenstein M. Quantum Games and Quantum Strategies. Physical Review Letters, 1999, 83 (15) : 3077-3080.
  • 5Benjamin S C, Hayden P M. Multiplayer Quantum Games. Physical Review A, 2001. DOI: http://dx, doi. org/10, ll03/PhysRevA. 64. 030301.
  • 6Meyer D A. Quantum Strategies. Physical Review Letters, 1999,82 (5) : 1052-1055.
  • 7Flitney A P, Hollenberg L C L. Nash Equilibria in Quantum Games with Generalized Two-Parameter Strategies. Physics Letters A, 2007, 363(5/6): 381-388.
  • 8Chappell J M, Iqbal A, Abbott D. N-Player Quantum Games in an EPR Setting[ EB/OL]. [2013-09-25 ]. http://www, ncbi. nlm. nih. gov/pmc/articles/PMC3350539/.
  • 9Ramzan M. Three-Player Quantum Kolkata Restaurant Problem un- der Deeoherence. Quantum Information Processing, 2013, 12 ( 1 ) : 577-586.
  • 10Schmid C, Flitney A P, Wieczorek W, et al. Experimental Implemen- tation of a Four-Hayer Quantum Game[ EB/OL]. [2013-09-25 ]. ht- tp ://iopscience. iop. org/1367 -2630/12/6/063031/fulhext/.

二级参考文献3

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部