期刊文献+

融合两层卡尔曼滤波和Mean Shift的自适应目标跟踪算法 被引量:1

Adaptive Object Tracking Algorithm Using Mean Shift Combined with Two Layers of Kalman Filter
原文传递
导出
摘要 为了改进Mean Shift算法及其与卡尔曼滤波融合跟踪算法的性能,提出了融合两层卡尔曼滤波和Mean Shift的自适应目标跟踪算法。首先通过运动学方程建立第一层的数学模型;然后利用巴氏系数、滤波器噪声与跟踪结果之间的关系,自适应地调整跟踪结果,得到目标的位置;最后对目标核函数直方图中的每个非零元素进行第二层滤波,通过动态变化的滤波残差和巴氏系数,实时调整更新滤波器中的各项参数,得到滤波后的目标模板。实验表明,该文算法与Mean Shift算法和单层卡尔曼滤波算法相比,在目标遮挡、光照变化和复杂环境下的跟踪效果更好。 An adaptive tracking algorithm that combined Mean Shift with two layers of Kalman filter was proposed in order to improve the performance of Mean Shift and Mean Shift with Kalman filter, First, we established mathematical model of first layer through kinematics equation; then, we used the relationship among Bhattacharyya coefficients, filter noise and tracking results to adjust self-adaptively tracking results to get target position. At last, in the second layer, we filtered all nonzero elements of the object kernel histogram through dynamic filter residual and Bhattacharyya coefficient, got filtered target template by adjusting and updating parameters of the filter in real time. The experimental results showed that compared with Mean Shift and Mean Shift with single layer of Kalman filter, we got better tracking results under the occlusion, changing illumination and complex environment.
出处 《武汉理工大学学报》 CAS CSCD 北大核心 2014年第9期130-136,共7页 Journal of Wuhan University of Technology
基金 国家自然科学基金(61203374) 中央高校基本科研业务费专项资金(310832142008)
关键词 目标跟踪 Mean SHIFT 两层卡尔曼滤波 巴氏系数 object traeking Mean Shift two layers of Kalman filter Bhattacharyya coefficient
  • 相关文献

参考文献15

  • 1Fukunaga K,Hostetler L.The Estimation of the Gradient of a Density-function with Applications in Pattern Recognition[J].IEEE,Trans on Information Theory,1975,21(1):32-40.
  • 2Cheng Yizong.Mean Shift,Mode Seeking,and Clustering[J].IEEE,Transactions on Pattern Analysis and Machine Intelligence,1995,17(8):790-799.
  • 3Comaniciu D,Ramesh V,Meer P.Kernel-based Object Tracking[J].IEEE,Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-576.
  • 4Robert T Collins,Liu Y,Leordeanu M.Online Selection of Discriminative Tracking Features[J].IEEE,Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1631-1643.
  • 5Jeyakar J,Babu R V,Ramakrishnan K R.Robust Object Tracking with Background-weighted Local Kernels[J].Computer Vision and Image Understanding,2008,112(3):296-309.
  • 6杜凯,巨永锋,靳引利,李刚.自适应分块颜色直方图的MeanShift跟踪算法[J].武汉理工大学学报,2012,34(6):140-144. 被引量:15
  • 7包旭,杜凯,田浩.基于改进Mean Shift和SURF的目标跟踪[J].计算机工程与应用,2013,49(21):133-137. 被引量:3
  • 8周尚波,胡鹏,柳玉炯.基于改进Mean-Shift与自适应Kalman滤波的视频目标跟踪[J].计算机应用,2010,30(6):1573-1576. 被引量:21
  • 9Ali A,Terada K.A General Framework for Multi-human Tracking Using Kalman Filter and Fast Mean Shift Algorithms[J].Journal of Universal Computer Science,2010,16(6):921-937.
  • 10Li X H.Object Tracking Using an Adaptive Kalman Filter Combined with Mean Shift[J].Optical Engineering,2010,49(2):020503-1-020503-3.

二级参考文献41

  • 1王长军,朱善安.基于Mean Shift的目标平移与旋转跟踪[J].中国图象图形学报,2007,12(8):1367-1371. 被引量:10
  • 2LIU P R,MENG M Q H,LIU P X,et al.Optical flow and active contour for moving object segmentation and detection in monocular robot[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation.Washington,DC:IEEE,2006:4075-4080.
  • 3COMANICIU D,RAMESH V,MEER P.Real-time tracking of nonrigid objects using Mean-Shift[C]//IEEE Computer Vision and Pattern Recognition.Washington,DC:IEEE,2000:142-149.
  • 4PARK D K,YOON H S,WON C S.Fast object tracking in digital video[J].IEEE Transactions on Consumer Electronics,2000,46(3):785-790.
  • 5WENG S K,KUO C M,TU S K.Video object tracking using adaptive Kalman filter[J].Journal of Visual Communication and Image Representation,2006,17(6):1190-1208.
  • 6KIM C,HWANG J-N.Fast and automatic video object segmentation and tracking for content-based applications[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12(2):122-129.
  • 7Blake A, Curwen R, Zisserman A.A framework for spatio-temporal control in the tracking of visual contour[J].International Journal of Computer Vision, 1993, 11(2):127~145.
  • 8Peng Ningsong, Yang Jie, Chen J X.Kernel-bandwidth adaptation for tracking object changing in size[A].Campilho A and Kamel M Eds.Proceedings of Int Conf Image Analysis and Recognition[C].Berlin, Heidelberg: Springer-Verlag, 2004, 2:581~588.
  • 9Legters G,Young T.A mathematical model for computer image tracking[J].IEEE Trans Pattern Analysis Machine Intelligence, 1982, 4(6):583~594.
  • 10Nguyen H T, Worring M, Van den Boomagaard R.Occlusion robust adaptive template tracking[A].Werner B Ed.Proceedings of IEEE International Conference on Computer Vision[C].New York: Printing House, 2001, 1:678~683.

共引文献53

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部