期刊文献+

RTC树的构建与不确定近邻关系查询方法 被引量:1

Construction of rectangle trapezoid circle tree and indeterminate near neighbor relations query
下载PDF
导出
摘要 空间索引结构和查询技术在空间数据库中具有重要的作用,针对已有的方法在复杂空间数据对象的近似和组织方面的局限性,提出了一种基于最小外接矩形(MBR)、梯形和圆的新的索引结构(RTC树)。为了有效处理复杂空间数据对象的最近邻(NN)关系查询问题,提出了基于RTC树的最近邻查询(NNRTC)算法,NNRTC算法利用剪枝规则可减少节点遍历和距离计算。针对障碍物对数据集中最近邻的影响问题,提出了障碍物环境下的基于RTC树的最近邻查询(BNNRTC)算法,BNNRTC算法先在理想空间进行查询,再对查询结果进行判断。为了有效处理动态单纯型连续近邻链查询问题,进一步给出了基于RTC树的动态单纯型连续近邻链查询(SCNNCRTC)算法。实验结果表明,相对基于R树的查询方法,所提的方法在处理数据量较大的复杂空间对象的数据集时可提高60%~80%的效率。 The spatial index structure and the query technology plays an important role in the spatial database. According to the disadvantages in the approximation and organization of the complex spatial objects of the existing methods, a new index structure based on Minimum Bounding Rectangle( MBR), trapezoid and circle( RTC( Rectangle Trapezoid Circle) tree) was proposed. To deal with the Nearest Neighbor( NN) query of the complex spatial data objects effectively, the NN query based on RTC( NNRTC) algorithm was given. The NNRTC algorithm could reduce the nodes traversal and the distance calculation by using the pruning rules. According to the influence of the barriers on the spatial data set, the barrier-NN query based on RTC tree( BNNRTC) algorithm was proposed. The BNNRTC algorithm first queried in an idea space and then judged the query result. To deal with the dynamic simple continuous NN chain query, the Simple Continues NN chain query based on RTC tree( SCNNCRTC) algorithm was given. The experimental results show that the proposed methods can improve the efficiency of 60%- 80% in dealing with large complex spatial object data set with respect to the query method based on R tree.
出处 《计算机应用》 CSCD 北大核心 2015年第1期115-120,共6页 journal of Computer Applications
基金 黑龙江省教育厅科学技术研究项目(12541128)
关键词 空间数据库 R树 RTC树 最近邻 单纯型连续近邻链 spatial database R tree RTC(Rectangle Trapezoid Circle) tree Nearest Neighbor(NN) simple continues near neighbor chain
  • 相关文献

参考文献8

二级参考文献197

  • 1张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 2杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:190
  • 3孙殿柱,范志先,李延瑞,孙肖霞.散乱数据点云型面特征分析算法的研究与应用[J].机械工程学报,2007,43(6):133-136. 被引量:31
  • 4Korn F, Muthukrishnan S. Influence sets based on reverse nearest neighbor queries [ C]. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas: ACM Press, 2000,201-212.
  • 5Yang C, Lin K. Anindex stracture for efficient reverse nearest neighbor queries[C]. In Proceedings of the 17th International Conference on Data Engineering, Heidelberg:IEEE Computer Society Press,2001,485-492.
  • 6Maheshwari A, Vahrcnhold J, Zeh N. On reverse nearest neighbor queries[ C]. In Proceedings of the Canadian Conference on Computational Geomctry,Alberta:ACM Press, 2002,128-132.
  • 7Ciaccia P, Patella M, Zezula P. M-tree: An efficient access method for similarity search in metric spaces[C]. In Proceedings of the 23rd VLDB International Conference, Athens, Greece, September 1997.
  • 8Papadias D,Zhang J, Mamoulis N,et al. Query processing in spatial network databases [ C ]. In Proceedings of the 29th International Conference on Very Large DataBases, Berlin, Germany , 2003, 802-813.
  • 9Shahabi C, Kolahdouzan M, Sharifzadeh. A road network embedding technique for K-nearest neighbor search in moving object data-bases[ C]. In Proceedings of ACM GIS, 2002,94-100.
  • 10Yiu M L, Papadias D, Mamoulis N, ct al. Reverse nearest neigh-bors in large graphs[ C]. The 21st International Conference on Data Engineering, Tokyo, Japan,2005.

共引文献121

同被引文献9

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部