期刊文献+

基于浮动阈值分类器组合的多标签分类算法 被引量:9

Multi-label classification algorithm based on floating threshold classifiers combination
下载PDF
导出
摘要 针对目标可以同时属于多个类别的多标签分类问题,提出了一种基于浮动阈值分类器组合的多标签分类算法。首先,分析探讨了基于浮动阈值分类器的Ada Boost算法(Ada Boost.FT)的原理及错误率估计,证明了该算法能克服固定分段阈值分类器对分类边界附近点分类不稳定的缺点从而提高分类准确率;然后,采用二分类(BR)方法将该单标签学习算法应用于多标签分类问题,得到基于浮动阈值分类器组合的多标签分类方法,即多标签Ada Boost.FT。实验结果表明,所提算法的平均分类精度在Emotions数据集上比Ada Boost.MH、ML-k NN、Rank SVM这3种算法分别提高约4%、8%、11%;在Scene、Yeast数据集上仅比Rank SVM低约3%、1%。由实验分析可知,在不同类别标记之间基本没有关联关系或标签数目较少的数据集上,该算法均能得到较好的分类效果。 To solve the multi-label classification problem that a target belongs to multiple classes, a new multi-label classification algorithm based on floating threshold classifiers combination was proposed. Firstly, the theory and error estimation of the Ada Boost algorithm with floating threshold( Ada Boost. FT) were analyzed and discussed, and it was proved that Ada Boost. FT algorithm could overcome the defect of unstabitily when the fixed segmentation threshold classifier was used to classify the points near classifying boundary, the classification accuracy of single-label classification algorithm was improved. And then, the Binary Relevance( BR) method was introduced to apply Ada Boost. FT algorithm into multi-label classification problem, and the multi-label classification algorithm based on floating threshold classifiers combination was presented, namely multi-label Ada Boost. FT. The experimental results show that the average precision of multi-label Ada Boost. FT outperforms the other three multi-label algorithms, Ada Boost. MH( multiclass, multi-label version of Ada Boost based on Hamming loss), ML-k NN( Multi-Label k-Nearest Neighbor), Rank SVM( Ranking Support Vector Machine) about4%, 8%, 11% respectively in Emotions dataset, and is just little worse than Rank SVM about 3%, 1% respectively in Scene and Yeast datasets. The experimental analyses show that multi-label Ada Boost. FT can obtain the better classification results in the datasets which have small number of labels or whose different labels are irrelevant.
出处 《计算机应用》 CSCD 北大核心 2015年第1期147-151,共5页 journal of Computer Applications
基金 四川省科技支撑计划项目(2011GZ0171 2012GZ0106)
关键词 连续ADABOOST 浮动阈值 极大似然原理 多标签分类 集成学习 二分类方法 real Ada Boost floating threshold maximum likelihood principle multi-label classification ensemble learning Binary Relevance(BR) method
  • 相关文献

参考文献13

  • 1TSOUMAKAS G, KATAKIS I. Multi-label classification: Mining, an over- view [ J]. International Journal of Data Warehousing and 2007, 3(3) : 1 - 13.
  • 2ZHANG M, ZHOU Z. A k-nearest neighbor based algorithm for multi-label classification [ C]//Proceedings of the 2005 IEEE Inter- national Conference on Granular Computing. Piscataway: IEEE, 2005:718-721.
  • 3ELISSEEFF A, WESTON J. A kernel method for multi-labelled elassifieation [ C]//NIPS 2001: Proceedings of the 2001 Neural In- formation Processing Systems: Natural and Synthetic. Cambridge: MIT Press, 2001:681-687.
  • 4SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions [ J]. Machine Learning, 1999, 37(3) : 297 - 336.
  • 5SCHAPIRE R E, SINGER Y. BoosTexter: a boosting based system for text categorization [J]. Machine learning, 2000, 39(2/3) : 135 - 168.
  • 6ZHANG M, ZHANG K. Multi-label learning by exploiting label de- pendency [ C]// KDD'10: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York: ACM, 2010: 999-1007.
  • 7TROHIDIS K, TSOUMAKAS G, KALLIRIS G, et al. Multi-label classification of music into emotions [ C]// ISMIR 2008: Proceed- ings of the 9th International Conference on Music Information Re- trieval. Philadelphia: [s.n.], 2008:325-330.
  • 8BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification [ J]. Pattern Recognition, 2004, 37(9): 1757 - 1771.
  • 9READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification [ J]. Machine Learning, 2011, 85 (3): 333-359.
  • 10FU Z, ZHANG D, ZHAO X, et al. AdaBoost algorithm with float- ing threshold [ C]//ACAI 2012: Proceedings of the 2012 Interna- tional Conference on Automatic Control and Artificial Intelligence. Stevenage: IET, 2012:349-354.

同被引文献81

  • 1赵凤展,杨仁刚.基于短时傅里叶变换的电压暂降扰动检测[J].中国电机工程学报,2007,27(10):28-34. 被引量:128
  • 2Tsoumakas G,Katakis I,Vlahavas I.Mining multi-labeldata[M]//Data mining and knowledge discovery handbook.US:Springer,2010:667-686.
  • 3Read J,Pfahringer B,Holmes G,et al.Classifier chainsfor multi-label classification[J].Machine Learning,2011,85(3):333-359.
  • 4Boutell M R,Luo J,Shen X,et al.Learning multi-labelscene classification[J].Pattern Recognition,2004,37(9):1757-1771.
  • 5Tsoumaks G,Vlahavas I.Random k-label sets:an ensemblemethod for multi-label classification[C]//Proceedings of the18th European Conference on Machine Learning(ECML),Warsaw,Poland,2007:406-417.
  • 6Huang S J,Zhou Z H.Multi-label learning by exploitinglabel correlations locally[C]//Proceedings of the 26th AAAIConference on Artificial Intelligence(AAAI’12).California:AAAI Press,2012:949-955.
  • 7Zhang M L,Zhang K.Multi-label learning by exploitinglabel dependency[C]//Proceedings of International Conferenceon Knowledge Discovery and Data Mining,2010:25-28.
  • 8Tsoumakas G,Katakis I,Vlahavas I.Effective and efficientmulti-label classification in domains with large numberof labels[C]//Proceedings of ECML/PKDD Workshopon Mining Multi-dimensional Data(MMD),2008:30-44.
  • 9Shen D,Ruvini J D,Mukherjee R,et al.A study ofsmoothing algorithms for item categorization on e-commercesites[J].Neurocomputing,2012,92:54-60.
  • 10Tai F,Zhou Z.Multi-label classification with principlelabel space transformation[J].Neural Computation,2012,24(9):2508-2542.

引证文献9

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部