期刊文献+

基于滑动窗口和蚁群优化算法的二次路径规划算法 被引量:6

Quadratic path planning algorithm based on sliding window and ant colony optimization algorithm
下载PDF
导出
摘要 针对蚁群优化(ACO)算法在复杂环境下规划能力较弱的问题,提出了一种基于滑动窗口和蚁群优化算法的二次路径规划(QACO)算法。对回退蚁群优化(ACOFS)算法的回退策略进行改进,通过降低回退路径上的信息素量,减少回退次数。第一次规划中,使用改进后的ACO算法对栅格环境进行全局路径规划;第二次规划中,滑动窗口沿着全局路径滑动,通过ACO算法规划出滑动窗口中的局部路径,并使用局部路径对全局路径进行优化,直至滑动窗口中包含目标位置。仿真实验表明:相比ACO、ACOFS算法,QACO算法的平均规划时间分别下降了26.21%、52.03%,平均路径长度下降了47.82%、42.28%,因此在复杂环境下QACO算法具有将强的路径规划能力。 A Quadratic path planning algorithm based on sliding window and Ant Colony Optimization( QACO) algorithm was put forward on the issue of weak planning ability of Ant Colony Optimization( ACO) algorithm in complex environments.The feedback strategy of the ACO based on Feedback Strategy( ACOFS) algorithm was improved, and the feedback times were reduced through the decrease of pheromone along feedback path. In the first path planning, the improved ACO algorithm was applied to make a global path planning for the grid environment. In the second path planning, the sliding windows slid along the global path. Local path in sliding windows was planned with ACO algorithm. Then the global path could be optimized by local path until target location was contained in the sliding window. The simulation experiments show that, the average planning time of QACO algorithm respectively reduces by 26. 21%, 52. 03% and the average length of path reduces by47. 82%, 42. 28% compared with the ACO and QACO algorithms. So the QACO algorithm has a relatively strong path planning ability in complex environments.
出处 《计算机应用》 CSCD 北大核心 2015年第1期172-178,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(61070062 61175123) 福建高校产学合作科技重大项目(2010H6007)
关键词 滑动窗口 蚁群优化算法 二次路径规划 栅格法 sliding window Ant Colony Optimization(ACO) algorithm quadratic path planning grid method
  • 相关文献

参考文献13

  • 1DORIGO M, BIRATTARI M. Ant colony optimization [ M]//Ency- clopedia of Machine Learning. Berlin: Springer, 2010:36-39.
  • 2FORSATI R, MOAYEDIKIA A, JENSEN R, et al. Enriched ant colony optimization and its application in feature selection [ J]. Neu- rocomputing, 2014, 142:354-371.
  • 3ZHANG F, LIU M, ZHOU Z, et al. Quantum ant colony algorithm- based emergency evacuation path choice algorithm [ C]// CSCWD 2013: Proceedings of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE, 2013:576-580.
  • 4GEORGE A, RAJAKUMAR B R. Fuzzy aided ant colony optimiza- tion algorithm to solve optimization problem [C]//ISI'12: Proceed- ings of the International Symposium on Intelligent Informatics. Ber- lin: Springer, 2013:207-215.
  • 5BUNIYAMIN N, SARIFF N, WAN N, et al. Robot global path planning overview and a variation of ant colony system algorithm [ J]. International Journal of Mathematics and Computers in Simula- tion, 2011, 5(1): 9-16.
  • 6LEE J-W, LEE J-J. Novel ant colony optimization algorithm with path crossover and heterogeneous ants for path planning ( C]//ICIT 2010: Proceedings of the 2010 IEEE International Conference on In- dustrial Technology. Piscataway: IEEE, 2010:559-564.
  • 7WANG P, TANG G, LI Y, et al. Ant colony algorithm using end- point approximation for robot path planning [ C]//CCC 2012: Pro- ceedings of the 2012 31st Chinese Control Conference. Piscataway: IEEE, 2012: 4960-4965.
  • 8ZHANG Y, CAO Y, HAN Z. Path planning of vehicle based on im- proved ant colony algorithm [ C]//ICMIC 2012: Proceedings of the 2012 International Conference on Modelling, Identification & Con- trol. Piscataway: IEEE, 2012:797-801.
  • 9OLEIWI B K, ROTH H, KAZEM B I. A hybrid approach based on ACO and GA for multi objective mobile robot path planning [ J]. Applied Mechanics and Materials, 2014, 527:203 -212.
  • 10HAMZHEEI M, FARAHANI R Z, RASHIDI-BAJGAN H. An ant colony-based algorithm for finding the shortest bidirectional path for automated guided vehicles in a block layout [ J]. The International Journal of Advanced Manufacturing Technology, 2013, 64( 1/2/3/ 4) : 399 -409.

同被引文献79

引证文献6

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部