期刊文献+

基于签到数据的群体旅游路线推荐 被引量:3

Group Trip Recommendation Based on Check-in Data
下载PDF
导出
摘要 移动设备和基于位置的服务的广泛应用带来了大量的时空数据,签到数据详细记录了人们出行的移动模式,分析签到数据可以提高基于位置服务的质量,其中旅游路线推荐是重要的研究方向。现有的路线推荐的研究通常只考虑用户独自出行的情况,推荐的路线尽可能满足单个用户需求。结伴出行是旅游中常见的现象,研究群体的旅游路线推荐具有重要的意义。针对此需求,提出了群体旅游路线推荐问题,目标是为群体推荐一条能够使群体整体满意度大,个体满意度差异小,即对群体内所有成员较公平的最优群体旅游路线。通过分析聚合用户偏好时通常采用的平均数策略与无痛苦策略在推荐结果方面存在的不足,针对搜索路线时所具有的动态性特点,提出了一种动态聚合用户偏好的策略(dynamic aggregation preference,DAP)。DAP策略根据当前个体满意度,动态调整群体偏好模型,保证了推荐结果对群体整体满意度较高的同时,个体差异度小。基于DAP策略,建立路线评价模型,对路线进行满意度评分,返回分值最高的路线。利用Gowalla和Foursquare社交网站真实的签到数据集进行了充分实验,验证了算法在不同参数设置下的有效性。 With the wide use of mobile devices and location-based services, they have brought a mass of spatial- temporal data, and the check-in data record the movement pattern of people in detail. Analyzing check-in data can improve the quality of location-based services, in which the trip recommendation is a significant research orientation. The existing studies of trip recommendation usually address the case of user' s traveling alone to meet the demand of individual user in the recommended route as much as possible. Travel together is a common phenomenon, and the research on group trip recommendation has the vital significance. For this requirement, this paper proposes a group trip recom- mendation with the goal of getting a trip route which can make high satisfaction for the overall group and satisfaction difference small between individuals in the group, and this route is optimal and is equitable for all the members. How to coordinate the demand of each user in the group is a vital issue in group trip recommendation. This paper proposes a dynamic aggregation preference (DAP) strategy for the dynamic feature when searching a route in view of the weakness in average strategy and no misery strategy which are usually employed in aggregation users' preferences. According to the degree of satisfaction for current individual, DAP adjusts the group preference model dynamically that can guar- antee the overall group high satisfaction and individuals satisfaction small difference. Based on DAP strategy, thispaper constructs the route evaluation model, grades the satisfaction of route and returns the route with the highest score. Using check-in data sets from Gowalla and Foursquare social networking websites, this paper evaluates the efficiency of the proposed algorithms with extensive experiments under a wide range of parameter settings, verifies the effectiveness of the algorithms.
出处 《计算机科学与探索》 CSCD 北大核心 2015年第1期51-62,共12页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61070024 61272179~~
关键词 旅游路线推荐 群体推荐 签到数据 基于位置的服务 trip recommendation group recommendation check-in data location-based service
  • 相关文献

参考文献16

  • 1Hsieh H P,Li C T,Lin S D.Exploiting large-scale check-in data to recommend time-sensitive routes[C]//Proceedings of the 2012 ACM SIGKDD International Workshop on Urban Computing(Urb Comp?12),Beijing,China,2012.New York,NY,USA:ACM,2012:55-62.
  • 2宋晓宇,许鸿斐,孙焕良,刘俊岭.基于签到数据的短时间体验式路线搜索[J].计算机学报,2013,36(8):1693-1703. 被引量:21
  • 3Yoon H,Zheng Yu,Xie Xing,et al.Social itinerary recommendation from user-generated digital trails[J].Personal and Ubiquitous Computing,2012,16(5):469-484.
  • 4Wei Lingyin,Zheng Yu,Peng W C.Constructing popular routes from uncertain trajectories[C]//Proceedings of the18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD?12),Beijing,China,2012.New York,NY,USA:ACM,2012:195-203.
  • 5程杰,曾广周,贺红.迁移工作流系统中迁移实例的路径规划研究[J].计算机科学与探索,2008,2(6):658-665. 被引量:2
  • 6Cheng A J,Chen Y Y,Huang Y T,et al.Personalized travel recommendation by mining people attributes from communitycontributed photos[C]//Proceedings of the 19th ACM International Conference on Multimedia(ICMI?11),Scottsdale,USA,2011.New York,NY,USA:ACM,2011:83-92.
  • 7Mc Carthy J F,Anagnost T D.Music FX:an arbiter of group preferences for computer supported collaborative workouts[C]//Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work(CSCW?98),Seattle,USA,1998.New York,NY,USA:ACM,1998:363-372.
  • 8O’Connor M,Cosley D,Konstan J A,et al.Poly Lens:a recommender system for groups of users[C]//Proceedings of the7th European Conference on Computer Supported Cooperative Work(ECSCW?01),Bonn,Germany,2001.Berlin,Heidelberg:Springer,2001:199-218.
  • 9Jameson A.More than the sum of its members:challenges for group recommender systems[C]//Proceedings of the Working Conference on Advanced Visual Interfaces(AVI?04).New York,NY,USA:ACM,2004:48-54.
  • 10Mc Carthy K,Mc Ginty L,Smyth B,et al.The needs of the many:a case-based group recommender system[M].Berlin,Heidelberg:Springer,2006:196-210.

二级参考文献26

  • 1杨公平,曾广周.基于导航的迁移工作流组织与执行[J].吉林大学学报(工学版),2006,36(5):819-823. 被引量:3
  • 2Zheng Yu, Xie Xing, Ma Wei-Ying. Mining interesting loca- tions and travel sequences from GPS trajectories//Proceed- ings of the 18th International World Wide Web Conference (WWW 2009). Madrid, Spain, 2009:791-800.
  • 3Majid A, Chen Ling, Mirza H T. et al. Mining context- aware significant travel sequences from geotagged social media//Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). Toronto, Canada, 2012:2443-2444.
  • 4Lu Xin, Wang Chang-Hu, Yang Jiang-Ming, et al. Photo2Trip: Generating travel routes from geo-tagged photos for trip planning//Proeeedings of the ACM International Conference on Multimedia. Firenze, Italy, 2010:143-152.
  • 5Kurashima T, Iwata T, Irie G, Fujimura K. Travel route recommendation using geotags in photo sharing sites// Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM 2010). Toronto, Canada, 2010:579-588.
  • 6Yoon H, Zheng Y. Xie X, Woo W. Social itinerary recom- mendation from user-generated digital trails. Personal and Ubiquitous Computing, 2012, 16(5): 469-484.
  • 7Cao Xin, Chen Li-Si, Cong Gao, Xiao Xiao-Kui. Keyword- aware optimal route search//Proceedings of the VLDB Endowment 2012. Istanbul, Turkey, 2012: 1136-1147.
  • 8Hsieh H-P, Li Cheng-Te, Lin Shou-De. Exploiting large- scale cheek-in data to recommend time-sensitive routes//Pro- eeedings of the 14th International Conference on Ubiquitous Computing (UrbComp' 12). Beijing, China, 2012:55-62.
  • 9Zheng Yu, Zhang Li-Zhu, Xie Xing, Ma Wei-Ying. Mining correlation between locations using human location history// Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACMGIS'09). Seattle, WA, USA, 2009:472-475.
  • 10Lian De-Fu, Xie Xing. Learning location naming from user check-in histories//Proceedings of the 19th ACM SIGSPA- TIAL International Conference on Advances in Geographic Information Systems (ACM GIS'11). Chicago, USA, 2011: 112-121.

共引文献21

同被引文献33

  • 1郑立平,郝忠孝.基于混合杂交的遗传算法求解旅行商问题[J].计算机工程,2005,31(20):168-169. 被引量:8
  • 2黄翰,郝志峰,吴春国,秦勇.蚁群算法的收敛速度分析[J].计算机学报,2007,30(8):1344-1353. 被引量:72
  • 3Gao Huiji, Liu Huan. Data analysis on location based socialnetworks[M]. New York, USA: Springer, 2014: 165-194.
  • 4McKenzie G, Adams B, Janowicz K. A thematic approachto user similarity built on geosocial check-ins [M]//GeographicInformation Science at the Heart of Europe. Basel, Switzer-land: Springer International Publishing, 2013: 39-53.
  • 5Bao Jie, Zheng Yu, Wilkie D, et al. A survey on recommen-dations in location-based social networks[J]. Geolnformatica,2014, 19(3): 525-565.
  • 6Hsieh H P,Li Chengte. Composing traveling paths fromlocation- based services[C]//Proceedings of the 6th AAAIInternational Conference on Weblogs and Social Media,Dublin, Ireland, Jun 4-7, 2012. Menlo Park, USA: AAAI,2012: 618-619.
  • 7Yoon H, Zheng Yu, Xie Xing, et al. Social itinerary recom- mendation from user-generated digital trails[J]. Personal and Ubiquitous Computing, 2012, 16(5): 469-484.
  • 8Cheng A J,Chen Y Y, Huang Y T, et al. Personalized travelrecommendation by mining people attributes from community-contributed photos[C]//Proceedings of the 19th ACM Inter-national Conference on Multimedia, Scottsdale, USA, Nov28-Dec 1,2011. New York, USA: ACM, 2011: 83-92.
  • 9Bao Jie, Zheng Yu, Mokbel M F. Location-based and prefer-ence- aware recommendation using sparse geo- social net-working data[C]//Proceedings of the 20th International Con-ference on Advances in Geographic Information Systems,Redondo Beach, USA, Nov 6-9,2012. New York,USA: ACM,2012: 199-208.
  • 10Hsieh H P,Li Chengte, Lin Shoude. Exploiting large-scalecheck-in data to recommend time-sensitive routes[C]//Pro-ceedings of the 2012 ACM SIGKDD International Work-shop on Urban Computing, Beijing, China, Aug 12,2012.New York, USA: ACM, 2012: 55-62.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部