期刊文献+

PCA与移动窗小波变换的高光谱决策融合分类 被引量:7

PCA and windowed wavelet transform for hyperspectral decision fusion classification
原文传递
导出
摘要 目的高光谱数据具有较高的谱间分辨率和相关性,给分类处理带来了一定的困难。为了提高分类精度,提出一种结合PCA与移动窗小波变换的高光谱决策融合分类算法。方法首先,利用相关系数矩阵对原始高光谱数据进行波段分组;然后,利用主成分分析对每组数据进行谱间降维;再根据提出的移动窗小波变换法进行空间特征提取;最后,采用线性意见池(LOP)决策融合规则对多分类器的分类结果进行融合。结果采用两组来自不同传感器的数据进行实验,所提算法的分类精度和Kappa系数均高于已有的5种分类算法。与SVM-RBF算法相比,本文算法的分类精度高出了8%左右。结论实验结果表明,本文算法充分挖掘了高光谱图像的谱间-空间信息,能有效提高分类正确率,在小样本情况下和噪声环境中也具有良好的分类性能。 Objective High spectral resolution and correlation hinder the application of classification in hyperspectral data. To improve classification accuracy, a hyperspeetral decision fusion classification method based on principal component anal- ysis (PCA) and windowed wavelet transform is proposed in this study. Method A correlation coefficient matrix is used to group original hyperspectral data. PCA is applied to reduce the spectral dimensions of data for each group. The proposed windowed wavelet transform method is used to extract spatial features. Linear opinion pool is employed to fuse the classifica- tion results from multi-classifiers. Result Using two hyperspectral data sets from different sensors, the proposed algorithm obtain higher classification accuracy and Kappa coefficient than five existing algorithms. The classification accuracy of the proposed algorithm outperforms that of support vector machine-radial basis function (SVM-RBF) by approximately 8%. Conclusion Experimental results show that the proposed method can explore spectral-spatial information from hyperspectral imagery, improve classification accuracy efficiently, and provide outstanding classification performance under a small sam- ple size and noisy environments.
作者 叶珍 何明一
出处 《中国图象图形学报》 CSCD 北大核心 2015年第1期132-139,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61171154 61420106007)
关键词 高光谱分类 主成分分析 小波变换 决策融合 hyperspectral classification principal component analysis wavelet transform decision fusion
  • 相关文献

参考文献15

  • 1Duda R O, Hart P E, Stork D G. Pattern Classification[M]. 2nd ed. New York: John Wiley & Sons, Inc., 2001.
  • 2Berge A, Solberg A H S. Structured Gaussian components for hyperspectral imgae classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3386-3396. [DOI: 10.1109/TGRS.2006.880626].
  • 3赵春晖,张燚,王玉磊.基于小波核主成分分析的相关向量机高光谱图像分类[J].电子与信息学报,2012,34(8):1905-1910. 被引量:19
  • 4张婧,孙俊喜,阮光诗,刘红喜.分段2维主成分分析的超光谱图像波段选择[J].中国图象图形学报,2014,19(2):328-332. 被引量:6
  • 5Wang J, Chang C. Application of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2601-2616. [DOI: 10.1109/TGRS.2006.874135].
  • 6Zhang Y, Zhou G, Zhao Q, et al. Spatial-temporal discriminant analysis for ERP-based brain-computer interface[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(2): 233-243. [DOI: 10.1109/TNSRE.2013. 2243471].
  • 7Bruce L M, Koger C H, Jiang L. Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(10): 2331-2338. [DOI: 10. 1109/TGRS.2002. 804721].
  • 8Rajadell O, Garcia-Sevilla P, Pla F. Spectral-spatial pixel characterization using gabor filters for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 860-864. [DOI: 10.1109/LGRS.2012.2226426].
  • 9Li W, Prasad S, Fowler J E, et al. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(4): 1185-1198. [DOI: 10.1109/TGRS.2011. 2165957].
  • 10Ye Z, Prasad S, Li W, et al. Locality-preserving discriminant analysis and Gaussian mixture models for spectral-spatial classification of Hyperspectral imagery[C]//Proceedings of the 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing. Shanghai, China:IEEE,2012:1-4. [DOI: 10.1109/WHISPERS.2012.6874299].

二级参考文献33

  • 1杨诸胜,郭雷,罗欣,胡新韬.基于分段主成分分析的高光谱图像波段选择算法研究[J].测绘工程,2006,15(3):15-18. 被引量:11
  • 2杨诸胜,郭雷,罗欣,胡新韬.一种基于主成分分析的高光谱图像波段选择算法[J].微电子学与计算机,2006,23(12):72-74. 被引量:21
  • 3童庆喜,张兵,郑兰芬.高光谱遥感-原理、技术与应用[M].北京:高等教育出版社,2006:1-415.
  • 4Lee H S, Younan N H, King R L. Hyperspectral Image Cube Compression Combining JPEG- 2000 and Spectral Decorrelation[C]//Proceeding of the International Geoscience and Remote Seining Symposium, Toronto, Canada, 2002, 6:3317 - 3319.
  • 5Du Q, Fowler J E. Hyperspectral Image Compression Using JPEG2000 and Principal Component Analysis[J]. IEEE Geoscience and Remote Sensing letters, 2007,4(2): 201-205.
  • 6Penna B, Tillo T, Magli E,et al. Transform Coding Techniques for Lossy Hyperspectral Data Compression[J]. IEEE Trans. on Geoscience and Remote Sensing, 2007, 45(5) : 1108 - 1421.
  • 7Penna B, Tillo T, Magli E,et al. Hyperspectral Image Compression Employing a Modal of Anomalous Pixels[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(4): 664- 668.
  • 8Stein D W J, Be.avert S G, Hoff L E, et al. Anomaly Detection from Hyperspectral Imagery[J]. IEEE Signal Process. Mag., 2002, 19(1 ) : 58 - 69.
  • 9Chang C I, Chiang S S. Anomaly Detection and Classification for Hyperspectral Imagery [J]. IEEE Trans. on Geoscience and Remote Sensing, 2002, 40(6) : 1314- 1325.
  • 10Chang C I, Du Q. Estimation of Number of Spectrally Distinct Signal Sources in Hyperspectral Imagery[J]. IEEE Trans. on Geoseienee and Remote Sensing, 2004, 42(3): 608-619.

共引文献27

同被引文献77

引证文献7

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部