期刊文献+

数据筛选的低频UWB SAR图像快速可视化

Fast visualization method for UWB SAR images based on 3σ measurement
原文传递
导出
摘要 目的为了能够快速得到适于视觉解译的UWB SAR图像,提出了一种基于数据筛选的低频UWB SAR图像快速可视化算法。方法该方法从统计学的角度出发,讨论了低频UWB SAR图像数据的统计特性和灰度分布模型;在此基础上,首次提出采用3σ准则对低频UWB SAR图像数据进行筛选;并使用修正映射函数映射。结果对处理后所得图像进行质量评估,可以发现,所得灰度图在等效视数、中央凹特征和对比敏感度特征等方面要优于传统方法处理的处理结果,因而更符合人类视觉系统特征,更易于人眼视觉系统全面了解低频UWB SAR图像表征的场景信息。结论与传统方法相比,该算法能自适应压缩图像动态范围,处理耗时短,所得图像细节突出,适于对低频UWB SAR图像数据实时处理。 Objective Visualization of ultra wide bandwidth synthetic aperture radar ( UWB SAR) data involves mapping from a high dynamic range amplitude values to the gray values of a lower dynamic range display device. This step is vital in the processing of UWB SAR images. However, traditional visual methods are unsuitable for the processing of UWB SAR images because these methods do not consider the characters of UWB SAR and because these methods require long process- ing time. To compress the UWB SAR data dynamic range in a shorter time, a new fast visualization method based on screening data for UWB SAR images is proposed. Method In the new method, the distribution of low frequency UWB SAR data and gray-value images is first discussed to obtain easily the reasonable distribution model for UWB SAR images. A 3tr measurement and amend mapping function are used to screen the image data. Therefore, the high dynamic range of amplitude values is compressed in a small dynamic range. The quality of UWB SAR images should be evaluated to deter- mine which image is convenient for the human visual system to obtain more geographic information. Result The proposed method costs less time compared with the original method, and the performance indicators of the former are better than that of the latter. The dark pixels are also stretched appropriately, and the bright details are preserved. Moreover, the images handled by the new method are suitable for the human visual system. Conclusion Therefore, this method will have a major role in the real-time processing of UWB SAR image data.
出处 《中国图象图形学报》 CSCD 北大核心 2015年第1期151-158,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61302194)
关键词 低频超宽带合成孔径雷达 动态范围压缩 3σ准则 修正映射函数 ultra wide bandwidth synthetic aperture radar (UWB SAR) dynamic range 3σ measurement, amend mapping function
  • 相关文献

参考文献9

  • 1An D X, Li Y H, Huang X T. Performance evaluation of frequency-domain algorithms for chirped low frequency UWB SAR data processing [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014,7(2): 678-690. [DOI:10.1109/JSTARS.2013.2265272].
  • 2章毓晋.图像工程上册:图像处理和分析[M].北京:清华大学出版社,2005:178-189.
  • 3Oliver C, Quegan S. Understanding synthetic aperture radar images [M]. Norwood: Artech House, 1998:245-255.
  • 4Goodman J. Statistical Properties of Laser Speckle Patterns [M]. Berlin: Springer-Verlag, 1975:9-75.
  • 5周广益,钟华,杨健.基于负指数变换和Mean-shift算法的SAR图像可视化方法[J].清华大学学报(自然科学版),2011,51(7):983-987. 被引量:4
  • 6Fukunaga, Keinosuke. Introduction to Statistical Pattern Recognition [M].Netherland: Elsevier, 1990:109-150.
  • 7Kay S. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory [M]. New Jersey: Pearson Education, 1993:201-259.
  • 8叶其孝,沈永欢.实用数学手册[M].北京:科学出版社,2005.476-480.
  • 9Zhou W, Lu L G, Bovik A C. Foveation scalable video coding with automatic fixation selection[J].IEEE Transactions on Image Processing, 2003,12(2):243-254..[DOI:10.199/TIP. 2003.809015].

二级参考文献12

  • 1章毓晋.图像工程(上册)图像处理和分析[M].北京:清华大学出版社,2004.
  • 2Franeeschetti G, Lanari R. Synthetic Aperture Radar Processing [M]. Boca Raton, USA: CRC Press, 1999.
  • 3PALSAR Algorithm Description [R]. Boulder, USA: Vexcel Corporation, 2003.
  • 4Curlander J, Mcdonough R. Synthetic Aperture Radar Systems and Signal Processing [M]. New York, USA:John Wiley & Sons Inc, 1991.
  • 5Kay S. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory [M]. New Jersey, USA: Pearson Education, 1993.
  • 6Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24:603 - 619.
  • 7Gauch J. Investigations of image contrast space defined by variations on histogram equalization [J].GVGIP: Grap Models Image Process, 1992,54:269 - 280.
  • 8Sherrier H, Johnson A. Regionally adaptive histogram equalization of the chest [J]. IEEE Trans Med Imag, 1987, 6: 1-7.
  • 9Kim Y. Enhancement using brightness preserving bi-histogram equalization [J]. IEEE Trans Consum Eletron, 1997, 43: 1-8.
  • 10Chen S, Ramli A. Minimum mean brightness error bi-histogram equalization in contrast enhancement [J]. IEEE Trans Consum Electron, 2003, 49: 1310- 1319.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部