期刊文献+

利用稻壳灰和人工砂的轻质油棕壳混凝土力学性能的提高(英文)

Enhancement of the mechanical properties of lightweight oil palm shell concrete using rice husk ash and manufactured sand
原文传递
导出
摘要 目的:探索稻壳灰和人工砂在轻质油棕壳混凝土中部分替换水泥和细骨料对混凝土力学性能的影响,期望得到力学性能较高的轻质混凝土。方法:1.将不同比例的稻壳灰(5%,10%,15%和20%)替换水泥和100%的人工砂或石粉替换沙子,研究它们对混凝土抗压强度的影响;2.研究不同替换比例的稻壳灰(0和15%)和人工砂(0,50%和100%)对混凝土力学性能的综合影响。结论:1.在15%的稻壳灰替换水泥和100%人工砂替换沙子的情况下,最大抗压强度为51.49 MPa;2.替换比例为15%稻壳灰和100%人工砂的组合表现出最好的力学性能,包括抗压强度、抗拉强度、抗弯强度和杨氏模量。 This study explores the use of rice husk ash (RHA) and manufactured sand (M-sand) as replacements for cement and fine aggregate, respectively, in lightweight oil palm shell concrete (OPSC). In the first stage of this study, the effect of vari-ous cement replacement levels, with RHA (5%, 10%, 15%, and 20%) and 100% sand replacement with M-sand and quarry dust (QD), on the compressive strength of OPSC was investigated. The results showed that the highest compressive strength of OPSC of about 51.49 MPa was achieved with the use of 15% RHA and M-sand. In the second stage of the work, the variables of RHA (0 and 15%) and M-sand (0, 50%, and 100%) were used to investigate their combined effects on the mechanical properties of OPSC. It was found that the combination of 15% RHA and 100% M-sand gave the best performance of OPSC in terms of me-chanical properties, such as compressive, splitting tensile, flexural strength, and Young’s modulus.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2015年第1期59-69,共11页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 Project supported by the Exploratory Research Grant Scheme(ERGS)(No.ER010-2013 A),University of Malaya,Malaysia
关键词 稻壳灰 人工砂 轻质混凝土 油棕壳 力学性能 Rice husk ash (RHA), Manufactured sand (M-sand), Lightweight concrete, Oil palm shell, Mechanical properties
  • 相关文献

参考文献39

  • 1Ak9aozoglu, S., Ati., C.D., 2011. Effect of granulated blast furnace slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates. Construction and Building Materials, 25(10): 4052-4058. [doi:10.1016/j.conbuildmat.2011.04.042].
  • 2Alengaram, U.J., Jumaat, M.Z., Mahmud, H., 2008a. Ductility behaviour of reinforced palm kernel shell concrete beams. European Journal of Scientific Research, 23(3): 406-420.
  • 3Alengaram, U.J., Jumaat, M.Z., Mahmud, H., 2008b. Influence of sand content and silica fume on mechanical properties of palm kernel shell concrete. International Conference in Construction, Building and Technology, Kuala Lumpur, Malaysia, p.251-262.
  • 4Alengaram, U.J., Mahmud, H., Jumaat, M.Z., et al., 2010. Effect of aggregate size and proportion on strength properties of palm kernel shell concrete. International Journal of the Physical Sciences, 5(12): 1848-1856.
  • 5Alengaram, U.J., Mahmud, H., Jumaat, M.Z., 2011. Enhancement and prediction of modulus of elasticity of palm kernel shell concrete. Materials & Design, 32(4): 2143-2148. [doi: 10.1016/j.matdes.2010.11.035].
  • 6Alengaram, U.J., Al Muhit, B.A., Jumaat, M.Z., et al., 2013. A comparison of the thermal conductivity of oil palm.
  • 7shell foamed concrete with conventional materials. Materials & Design, 51:522-529. [doi:10.1016/j.matdes. 2013.04.078].
  • 8ASTM C127-12, 2012. Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate. ASTM International.
  • 9ASTM Cl28-12, 2012. Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate. ASTM International.
  • 10ASTM C469-02, 2002. Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部