期刊文献+

基于时域有限差分法LIEW动态模型土壤电离参数的估计 被引量:1

Estimation of Soil Ionization Parameters of LIEW Dynamic Model based on Finite Difference Time Domain Method
下载PDF
导出
摘要 从电磁场分析角度出发,采用时域有限差分法对电磁场数据进行计算分析,提取土壤电离的信息,将整数微分进化策略与Matlab分布式计算相结合,提出针对任意均匀分布土壤建立LIEW动态模型的方法,优化确定LIEW动态模型参数——土壤电离临界电场强度和电离时间常数。 From the viewpoint of the electromagnetic field,using the finite difference time domain method (FDTD) to analyze the electromagnetic field and extract the information of the soil ionization.Combine the integral differential evolution strategy and the Matlab distributed computing to attain and optimize the parameters of the LIEW dynamic model-the critical electric field intensity of soil and the ionization time constant.In this paper,the method to building the LIEW dynamic model for any kind of homogeneous soil is presented.
出处 《成都信息工程学院学报》 2014年第5期454-457,共4页 Journal of Chengdu University of Information Technology
基金 国家自然科学基金资助项目(41305005) 中国博士后科学基金资助项目(2014M552540XB) 四川省教育厅重点资助项目(11ZA111)
关键词 时域有限差分法 整数微分进化策略 LIEW动态模型 分布式运算 finite difference time domain method integral difference evolution strategy distributed computing
  • 相关文献

参考文献11

  • 1P L Bellaschi, R E Armington, A E Snowden. Impulse and 60-cycle characteristics of driven grounds, PartII[J ]. AIEE Trans. , 1942,61(3) :349 - 363.
  • 2A C Liew, M Darveniza. Dynamic model of impulse characteristics of concent rated earths [J]. IEE Proceed- ings-Vision, Image and Signal Processing, 1974,121(2) : 123 - 135.
  • 3A. Geri. Behaviour of Grounding Systems Excited by High Impulse Currents: the Model and Its Validation[J ]. IEEE Transactions on Power Delivery, 1997,14(3):1008 - 1017.
  • 4Anton Habjanic, Mladen Trlep. The simulation of the soil ionization phenomenon around the grounding system by the finite element method [J]. IEEE Transactions on Magnetics, 2006, 42(4) : 867 - 870.
  • 5GAla, P L Buccheri, P Romano, et al. Finite difference time domain simulation of earth electrodes soil ionisa- tion under lightning surge condition [J]. lET Science, Measurement & Technology,2008,2(3) :134 - 145.
  • 6Oettle, E. E. A new general estimation curve for predicting the impulse impedance of concentrated earth elec- trodes[J]. IEEE Trans. Power Deliv., 1988,3(4) :2020 - 2029.
  • 7Mousa, A. M. The soil ionization gradient associated with discharge of high currents into concentrated elec- trodes [ J ]. IEEE Trans. Power Deliv., 1994,9 (3) : 1669 - 1677.
  • 8GAla, P L Buccheri, P Romano, F Viola. Finite difference time domain simulation of earth electrodes soil ion- isation under lightning surge condition [J ]. IET Science, Measurement & Technology, 2008,2 (3) : 134 - 145.
  • 9Storn R, Price K. Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Space[ R]. Technical report, International Computer Science Institute, Berkley, 1995.
  • 10Storn R, Price K. Differential Evolution- a Simple and Efficient Heuristic for Global Optimization over Con- tinuous Spaces[J]. Journal of Global Optimization, 1997, 11(4) : 341 - 359.

二级参考文献11

  • 1KNOLL D A, KEYES D E. Jacobian-free Newton-Krylov methods: a survey of approaches and applications [ J ]. Journal of Computational Physics, 2004, 193 : 357-397.
  • 2CHAKRAVARTY S, MITYRA R, RHODES W N. Application of a microgenetic algorithm (MGA) to the design of broad- band microwave absorbers using multiple frequency selective surface screens 15uried in dielectrics [ J ]. IEEE Trans. Antennas and Propagation, 2002, 50(3): 284-296.
  • 3PEREZ J R, BASTERRECHEA J. Application of a micro-genetic algorithm to planar near-field antenna measurements [ C ] . Proceedings of Antennas and Propagation Society International Symposium. Piscataway: IEEE Press, 2003, 2: 68-71.
  • 4CAORSI S, DONELLI M, MASSA A, et al. Detection of buried objects by an electromagnetic method based on a differential evolution approach[ C ].Instrumentation and Measurement Technology Conference. Piscataway. IEEE Press, 2004 : 1 107- 1 111.
  • 5DONELLI M, MASSA A. Computational approach based on a particle swarm optimizer for microwave imaging of two- dimensional dielectric scatterers[J]. IEEE Trans. Microwave Theory and Technique, 2005, 53(5) : 1 761-1 776.
  • 6CAORSI S, MASSA A, PASTOR/NO M. A computational technique based on a real-Coded genetic algorithm for microwave imaging purposes [ J ]. IEEE Trans. Geoscience and Remote Sensing, 2000, 38 (4) : 1 697-1 708.
  • 7BERIZZI F, CORSINI G. A new fast method for the reconstruction of 2-D microwave images of rotating objects[ J]. IEEE Trans. Image Processing, 1999, 8(5): 679-687.
  • 8ANTON G T, KAMAL B, AM LIE C S. et al. Theoretical and computational aspects of 2-D inverse profiling [ J ]. IEEE Trans. Geoscience and Remote Sensing, 2001, 39(6) : 1 316-1 330.
  • 9WEI Tao, LIAO Cheng, LIU Yunlin, et al. Monostatic microwave imaging of arbitrary convex PEC cylinder [ C ] . Proceedings of ISAPE. Guilin : IEEE Press, 2006 : 944-946.
  • 10覃延明,廖成,卫涛.基于微遗传算法的超宽带天线(阵)优化[J].西南交通大学学报,2007,42(1):40-43. 被引量:6

共引文献6

同被引文献14

  • 1Rakov V A, Uman M A. Review and evaluation of lightning return stroke models including some aspects of their application[J ]. IEEE Trans Elec- tromagn Compat, 1998,40 : 403 - 426.
  • 2Rakov V A, Uman M A. Lightning physics and effects [ M ]. Cambridge university press. Cam- bridge, United Kingdom 2003: 394.
  • 3Podgorski, A S, Landt, J A. Three dimensional time domain modelling of lightning [J ]. IEEE Trans. Pow. Del, 1987, (2) :931 - 938.
  • 4Moini R, Kordi B, Raft G Z, et al. A new light- ning return stroke model based on antenna theory [J ]. J. Geophys. Res, 2000,105 : 693 - 702.
  • 5Baba, Y, Ishii, M. Numerical electromagnetic field analysis of lightning current in tall structures [J]. IEEE Trans. Pow. Del, 2001,16(2) :324 - 328.
  • 6Delfino, F, Rossi, M, Rachidi, F. An algorithm for the exact evaluation of the underground lightning electromagnetic fields [J ]. IEEE Trans. Electro- magn. Compat. ,2007,49, (2) :401 - 411.
  • 7Sheshyekani K, Akbari M. Evaluation of light-nin4g-induced voltages on multi-conductor over- head lines located above a lossy dispersive ground [J ]. IEEE Trans. Power Deliv., 2014,29, (2) : 683 - 690.
  • 8Baba, Y, Ishii, M. Numerical electromagnetic field analysis of lightning current in tall structures[J ]. IEEE Trans. Power Deliv. ,2001,16, (2) :324 - 328.
  • 9Lu, G. Transient electric field at high altitudes due to lightning: possible role of induction field in the formation of elves[J ]. J. Geophys. Res., 2006,111, (I)2) :2103.
  • 10Miry C, Amador E, Duquerroy P, et al. Evalua- tion of lightning induced magnetic fields inside reinforced concrete buildings[ R]. 2013 Interna- tional Symposium on Lightning Protection (XII SIPDA), Belo Horizonte, Brazil October 7 - 11, 2013:145 - 150.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部