期刊文献+

基于多项式混沌理论的不确定度评定与分析 被引量:4

Measurement Uncertainty Evaluation and Analysis Based on Polynomial Chaos Approach
下载PDF
导出
摘要 针对基于ISOGUM提供的测量不确定度评估方法所存在的局限,提出了采用多项式混沌方法进行测量结果不确定度评估的新方法。分析了GUM测量不确定度评估方法所隐含的假设条件,给出了多项式混沌方法的测量不确定度评估原理。通过GUM与多项式混沌方法扩展不确定度包含因子估计误差的数值计算表明,当随机变量的PDF不满足高斯分布时,多项式混沌估计方法所获得的扩展不确定度更能反映实际情况。 Deal with the limitations of measurement uncertainty evaluation method based on ISO GUM, A new approach to the evaluation of measurement uncertainty based on the polynomial chaos theory is presented. The main assumptions behind the measurement uncertainty propagation based on the GUM is analyzed. The measurement uncertainty evaluation used the PCT approach is provided. By the GUM and PCT method, the relative absolute difference between the confidence obtained in the two cases and the true value is computed. It is show that in case of a distribution very different from the Gaussian, the polynomial approach leads to results very close to the ideal case.
机构地区 [
出处 《计量学报》 CSCD 北大核心 2015年第1期107-112,共6页 Acta Metrologica Sinica
关键词 计量学 多项式混沌 测量不确定度 Metrology Polynomial chaos Measurement uncertainty
  • 相关文献

参考文献9

  • 1ISO/IEC:Uncertainty of measurement—Part 3:Guide to the expression of uncertainty in measurement[S].2008.
  • 2国家质量监督检验检疫总局.JJF1059.1-2012测量不确定度评定与表示[S].2012.
  • 3DAntona G.Expanded uncertainty and coverage factor computation by higher order moments analysis[C]// IMTC 04.Proceedings of the 21st IEEE,Vol.1,234-238.
  • 4王晓东,康顺.多项式混沌方法在随机方腔流动模拟中的应用[J].中国科学:技术科学,2011,41(6):790-798. 被引量:22
  • 5皮霆,张云清,吴景铼.基于多项式混沌方法的柔性多体系统不确定性分析[J].中国机械工程,2011,22(19):2341-2343. 被引量:10
  • 6Dongbin Xiu,Karniadakis G E.Modeling uncertainty in flow simulations via generalized polynomial chaos[J].Journal of Computational Physics,2003,187 :137-167.
  • 7Finette S.A stochastic representation of environmental uncertainty and its coupling to acoustic wave propagation in ocean waveguides[J].Journal of the Acoustical Society of America,2006,120(5):2567-2579.
  • 8Lacor C,Smirnov S.Uncertainty propagation in the solution of compressible Navier-Stokes equations using polynomial chaos Decomposition[C]//NATO RTO AVF-147 Symposium on “Computational Uncertainty in Military Vehide Design”,Athens,Grecce,2007,1-13,48.
  • 9H J 威佛,中德·王 (数学).离散和连续傅里叶分析理论[M].北京:北京邮电学院出版社,1991.216-219.

二级参考文献24

  • 1康顺.计算域对CFD模拟结果的影响[J].工程热物理学报,2005,26(z1):57-60. 被引量:21
  • 2康顺,刘强,祁明旭.一个高压比离心叶轮的CFD结果确认[J].工程热物理学报,2005,26(3):400-404. 被引量:37
  • 3AIAA. Guide for verification and validation of computational fluid dynamics simulation. AIAA, G-077, 1998.
  • 4EU Project (sixth framework). Non-deterministic simulation for CFD-based design methodologies (NODESIM-CFD). 2006, http://www.nodesim.eu/.
  • 5Zang T A, Hemsch M J, Hilburger M W, et al. Needs and opportunities for uncertainty based multidisciplinary design methods for aerospace vehicles. Hampton, Va: NASA Langley Res Cent, 2002, 1:53.
  • 6Wiener N. The homogeneous chaos. Am J Math, 1938, 60:897-936.
  • 7Ghanem R G, Spanos P D. Stochastic Finite Elements: A Spectral Approach. Revised Edition. USA: Dover Publications, 2003.
  • 8Le Maitre O P, Knio O, Habib N N, et al. A stochastic projection method for fluid flow I. Basic formulation. J Comput Phys, 2001, 173: 481-511.
  • 9Xiu D, Karniadakis G E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput, 2002, 24: 619- 644.
  • 10Xiu D, Karniadakis G E. Modeling uncertainty in flow simulations via generalized polynomial chaos. J Comput Phys, 2003, 187:137-167.

共引文献30

同被引文献42

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部