期刊文献+

基于COMSOL Multiphysics模型的液态罐头食品热杀菌过程模拟研究 被引量:5

Numerical Simulation of Canned Liquid Food Thermal Sterilization using COMSOL Multiphysics
原文传递
导出
摘要 以水和CMC溶液为研究对象,通过无线实时温度传感器检测热杀菌过程中罐中心温度的变化,并以COMSOL Multiphysics软件为基础建立传热模型。对比模拟结果与实际数据发现模型能很好地模拟罐中心点温度的变化。在此基础上,进一步用COMSOL Multiphysics软件模拟整罐空间的温度分布、速度分布及致死率值,得出在50 s与4 000 s时,水的最大流动速度分别为6.36 mm/s和5.05 mm/s,1%CMC溶液的最大流动速度分别为0.394 mm/s与1.124 mm/s,罐内最慢加热区(SHZ)位于罐体高度10%-30%处,与文献一致。杀菌结束时,水的最大、最小致死率值相差0.6min,而1%CMC与2.5%CMC溶液最大、最小致死率相差分别为12.4 min和18.86 min,这表明对于较高黏度的食品应采用旋转杀菌。 The simulation and validation during thermal processing of model liquids [sodium carboxy-methyl cellulose(CMC) and water] in a still can using COMSOL Multiphysics is the subject of this paper. The COMSOL Multiphysics was used to predict the temperature of centre point in the can. Experiments were run using several metal cans containing water, 1% CMC and 2.5% CMC solution respectively and the temperature of centre point was determined by the wireless real-time temperature recorder. Results obtained by COMSOL Multiphysics for temperature profiles were in good agreement with experimentally determined values. After validation of the model, further simulations were carried out for the temperature distribution, the velocity profile and lethality at each second in the can. It was shown that the maximum velocity was 6.36 mm/s and 5.05 mm/s at 50 s and 4 000 s for water, 0.394 mm/s and 1.124 mm/s for 1%CMC solution. The slowest heating zone is located at a height of about 10%-30% of the can height from the bottom. The difference of lethality between maximum and minimum was 0.60 min for water, 12.40 min for 1% CMC solution and 18.86 min for 2.5% CMC solution which suggests the necessity for sterilization in a rotary retort for high viscosity food.
出处 《中国食品学报》 EI CAS CSCD 北大核心 2014年第11期76-82,共7页 Journal of Chinese Institute Of Food Science and Technology
基金 国家高技术研究发展计划(2011AA100804)
关键词 热杀菌 COMSOL MULTIPHYSICS 模拟 thermal sterilization COMSOL Multiphysics simulation
  • 相关文献

参考文献16

  • 1Farid MM, Ghani A. A new computational technique for the estimation of sterilization time in canned food [J]. Chemical Engineering and Processing, 2004, 43(4): 523-531.
  • 2夏文水.食品工艺学[M].北京:中国轻工业出版社,2011:359.
  • 3黄建蓉,李琳.计算机模拟及优化技术在罐头食品热杀菌过程中的应用[J].粮油加工与食品机械,2000(6):26-31. 被引量:7
  • 4Paul DA, Anishaparvina A, Anandharmakrishnan C. Computational fluid dynamics studies on pasteurisation of canned milk[J]. International Journal of Dairy Technology, 2011, 64(2): 305-313.
  • 5Erdogdu F, Uyar R, Palazoglu TK. Experimental comparison of natural convection and conduction heat transfer[J]. Journal of Food Process Engineering, 2010, 33(sl): 85-100.
  • 6Kiziltas S, Erdogdu F, Palazoglu TK. Simulation of heat transfer for solid-liquid food mixtures in cans and model validation under pasteurization conditions[J]. Journal of Food Engineering, 2010, 97(4): 449-456.
  • 7Augusto PED, Pinheiro TF, Cristianini M. Using computational fluid dynamics(CFD) for the evaluation of beer pas- teurization: effect of orientation of cans[J]. Ci~nc. Tecnol. Aliment Campinas, 2010, 30(4): 980-986.
  • 8Augusto PED, Pinheiro TF, Cristianini M. Computational fluid dynamics analysis of viscosity influence on thermal in-package liquid food process[J]. International Journal of Food Engineering, 2010, 6(6): 1-14.
  • 9Augusto PED, Cristianini M. Evaluation of geometric symmetry condition in numerical simulations of thermal process of packed liquid food by computational fluid dynamics(CFD)[J]. International Journal of Food Engineering, 2010, 6 (5): 1-18.
  • 10Augusto PED, Cristianini M. Computational fluid dynamics analysis of viscosity influence on thermal in-package liq- uid food process[J]. International Journal of Food Engineering, 2010, 6(6): 1-14.

二级参考文献2

共引文献17

同被引文献54

  • 1谢晶,刘晓丹.利用酶动力学拟合在密闭条件下香菇呼吸速率方程及米氏方程[J].中国食品学报,2006,6(1):96-100. 被引量:14
  • 2夏文水.食品工艺学[M].北京:中国轻工业出版社,2011:359.
  • 3王刚,安琳.COMSOLMultiphysics工程实践与理论仿真-多物理场与数值仿真技术[M].北京:电子工业出版社,2012:76-81.
  • 4Farid MM, Ghani A. A new computational technique for the estimation of sterilization time in canned food [J].Chemical Engineering and Processing, 2004, 43(4) : 523—531.
  • 5Erdogdu F, Uyar R, Palazoglu TK. Experimental comparison of natural convection and conduction heat transfer[J].Journal of Food Process Engineering, 2010,33(si) : 85-100.
  • 6.Kiziltas S, Erdogdu F, Palazoglu TK. Simulation of heat transfer for solid-liquid food mixtures in cans and modelvalidation under pasteurization conditions[J]. Journal of Food Engineering, 2010, 97(4) ; 449一456.
  • 7.Augusto PED, Pinheiro TF, Cristianini M. Using computational fluid dynamics (CFD) for the evaluation of beerpas-teurization: effect of orientation of cans[J]. Ci6nc. Tecnol. Aliment, Campinas, 2010, 30(4) : 980-986.
  • 8.Augusto PED, Pinheiro TF, Cristianini M. Computational fluid dynamics analysis of viscosity influence on thermalin-package liquid food process[J]. International Journal of Food Engineering, 2010, 6(6) : 1-14.
  • 9.Augusto PED, Cristianini M. Evaluation of geometric symmetry condition in numerical simulations of thermal processof packed liquid food by Computational Fluid Dynamics (CFD)[J]. International Journal of Food Engineering, 2010,6(5):1-18.
  • 10.Padmavati R,Anandharamakrishnan C. Computational Fluid Dynamics Modeling of the thermal processing of cannedpine-apple slices and titbits[J]. Food and Bioprocess Technology, 2013, 6(4) : 882-895.

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部