期刊文献+

拟严格渐近伪压缩映射的不动点的收缩投影算法 被引量:2

On Shrinking Projection Methods of Fixed Points for Quasi-Strict Asymptotically Pseudo-Contractions
下载PDF
导出
摘要 在自反的严格凸的具有K-K性质的光滑Banach空间中,设计了一种收缩投影算法用以逼近拟严格渐近伪压缩映射的不动点,并利用所设计的算法证明了不动点的强收敛定理.所得结果是近期相关结果的改进与推广. The paper aims at proposing a shrinking projection method and at proving a strong convergence theorem for a quasi‐strict asymptotically pseudo‐contraction .Its results hold in reflexive ,strictly convex , smooth Banach spaces with the property K -K .The results of this paper illustrate improvement and ex‐tension of recent some relative results .
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第12期27-31,共5页 Journal of Southwest China Normal University(Natural Science Edition)
基金 陕西省教育厅科研计划项目资助(2013JK0575) 陕西省高水平大学建设专项资金资助项目数学学科(2012SXTS07)
关键词 收缩投影算法 拟严格渐近伪压缩映射 K-K性质 shrinking projection method quasi-strict asymptotically pseudo-contraction K-K property
  • 相关文献

参考文献5

二级参考文献21

  • 1Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive[J]. Proc Amer Math Soc, 1972, 35(1):171-174.
  • 2Xu H K. Existence and convergence for fixed point of mapping of asymptotically nonexpansive type[J]. Nonlinear Anal TMA,1991,224:91-101.
  • 3Zhang S S, Cho Y J, Zhou H Y. Iteration Methods for Nonlinear Operator Equations in Banach Spaces[M]. New York :Nova Science Publishers, 2002.
  • 4Takahashi W. Nonlinear Functional Analysis[M]. Yokohama Publishers, Yokohama,2000.
  • 5Kamimura S, Takahashi W. Strong convergence of a solutions to accretive operator inclusions and applications[J]. Set-Val-ue Anal, 2000,8 : 361-374.
  • 6Iemoto S, Takahashi W. Approximating Common Fixed Points of Nonexpansive Mappings and Nonspreading Mappings in a Hilbert Space[J].Nonlinear Anal, 2009, 71: 2082-2089.
  • 7Nakajo K, Takahashi W. Strong Convergence Theorems for Nonexpansive Mappings and Nonexpansive Semigroups [J]. J Math Anal Appl, 2003, 279: 372-379.
  • 8Marino G, Xu H K. Weak and Strong Convergence Theorems for Strict Pseudo-contractions in Hilbert Spaces [J]. J Math Anal Appl, 2007, 329:336 - 346.
  • 9Zhou H Y, Convergence Theorems of Fixed Points for κ-strict Pseudo-contractions in Hilbert Spaces [J]. Nonlinear Anal, 2008, 69:456-462.
  • 10Takahashi W, Nonlinear Functional Analysis [M]. Yokohama: Yokohama Publishers, 2000.

共引文献21

同被引文献9

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部