期刊文献+

一种文本分类模式下的本体构建方法 被引量:1

An Approach of Ontology Constructing for Text Information Classification
下载PDF
导出
摘要 本体在知识管理和语义网中扮演着越来越重要的角色,但本体的构建是一项费力又费时的工作,为此本文提出一种基于文本分类模式下的本体自动构建方法。该方法以形式化概念理论分析作为基础,计算出概念之间的相关度,以概念间的相关度和它们在文档中出现的频率矩阵构建本体概念图。实验结果表明,在文档分类模式下自动构建本体支持目前的信息分类系统,形成的本体有利于更好地共享和重用,促进语义Web的本体的升级。 Ontology is playing an increasingly important role in knowledge management and the semantic Web. However, creating ontologies is usually tedious and costly from scratch, this study presented a novel approach of automated ontology constructing for text information classification. This methodology used a degree of relevancy among concept that calculated through formal concept analysis and frequency matrix of terms appearing in document to structure an ontology diagram. An experiment about this research that based on the present information classification system was effective to automated ontology constructing, the ontologies accelerated information shared and reused to promote upgrading of semantic web.
出处 《农业网络信息》 2014年第12期61-66,共6页 Agriculture Network Information
基金 宁夏高等学校科学技术研究项目(编号:NGY2014009) 北方民族大学自然科学基金(编号:2013XYZ028)
关键词 语义网 本体构建 信息分类 形式化概念分析 semantic Web ontology constructing information classification formal concept analysis
  • 相关文献

参考文献11

  • 1梁健,王惠临.基于文本的本体学习方法研究[J].情报理论与实践,2007,30(1):112-115. 被引量:11
  • 2张大鹏.基于本体的文本分类关键技术研究[D].长春:东北师范大学,2012.
  • 3Maedche A, Staab S. Ontology learning for the semantic web [J]. IEEE Intelligent systems, 2001,16(2):72-79.
  • 4Stumme G. Formal concept analysis on its way from mathematics tocomputer science[M]//Conceptual Structures: Integration and Inter- faces. Springer Berlin Heidelberg, 2002:2-19.
  • 5Chowdhury G.Introduction to modern information retrieval [M]. Facet publishing,2010.
  • 6Bucbli F.Detecting software patterns using formal concept analysis [J]. inder Philosophisch-naturwissenschaftlichen Fakuh: University of Bern, 2003:10-15.
  • 7Ganter B, Stumme G, Wille R. Formal Concept Analysis: founda- tions and applications[M]. Springer,2005.
  • 8Kang S H, Huh W, Lee S, et al. Automatic classification of WWW documents using a neural network [C]//2000, Proceedings of inter- national conference on production research, Bangkok.
  • 9Han J, Kamber M, Pei J. Data mining: concepts and techniques [M]. Morgan kaufmann,2006.
  • 10Wu S H, Day M Y, Tsai T H, et al. FAQ-centered organizational memory [M]//Knowledge Management and Organizational Memo- ries. Springer US,2002:103-112.

二级参考文献12

  • 1方卫东,袁华,刘卫红.基于Web挖掘的领域本体自动学习[J].清华大学学报(自然科学版),2005,45(S1):1729-1733. 被引量:31
  • 2刘柏嵩,高济.面向知识网格的本体学习研究[J].计算机工程与应用,2005,41(20):1-5. 被引量:19
  • 3HANJW KAMBERM 范明 孟小峰 译.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 4MANNING CD,SCHUTZE H.统计自然语言处理基础[M].苑春法,等译.北京:电子工业出版社,2005.
  • 5Gomez-Perez A, Manzano-Macho D. A survey of ontology learning methods and techniques [M/OL]. http: //ontoweb. org/Members/ruben/Delivera ble%2 01.5/view
  • 6Hearst M A. Automated discovery of WordNet relations [EB/OL]. http://www. sims. berkeley. edu/-hearst/papers/wordnet98, pdf
  • 7Hearst M A. Automatic acquisition of hyponyms from large text corpora [EB/OL]. http://www. cs. mu. oz. au/acl/C/C92/C92-2082. pdf
  • 8Agirre E, Ansa O, Hovye E. Enriching very large ontologies using the WWW [EB/OL]. http: //ol2000. aifb. unikarlsruhe.de/final/EAgirre_ 14. pdf
  • 9Kietz J, Maedche A, Volz R. A method for semi-automatic ontology acquisition from a corporate Intranet [EB/OL]. http: //www. irit. fr/ACTIVITES/EQ_ SMI/GRACQ/WSEK-AW2 00/PAPERS/Maedche. pdf
  • 10Xu F, Kurz D, Piskorski J, et al. A domain adaptive approach to automatic acquisition of domain relevant terms and their relations with bootstrapping [EB/OL]. http: //www.diki. uni-sb, e/-feiyu/LREC_TermExtraction_final.pdf

共引文献10

同被引文献9

  • 1Bowman S, Willis C. We media. How audiences are shaping the future of news and information [ EB/OL ]. [ 2015 - 09 - 15 ]. http ://www. hypergene, net/wemedia/download/we_media, pdf.
  • 2Chen Zhiyuan, Liu Bing, Hsu M, et al. Identifying intention posts in discussion forums[ EB/OL]. [ 2015 - 09 - 13 ]. http ://antholo- gy. aclweb, org/N/N13/N13 - 1124. pdf.
  • 3Wang Jinpeng, Zhao Wayne Xin, Wei Haitian, et al. Mining new business opportunities? : Identifying trend related products by lever- aging commercial intents from microblogs [ EB/OL ]. [ 2015 -09 - 15 ]. http://www, aclweb, org/anthology/D/D13/D13 - 1132. pdf.
  • 4Song I, Diederich J. Intention extraction from text messages [ J ]. Lecture Notes in Computer Science, 2010(6443 ) :330 -337.
  • 5Kang J, Patrick Saint-dizier. Discourse structure analysis for re- quirement mining[ J]. International Journal of Knowledge Content Development & Technology, 2013, 3 (2) :43 - 65.
  • 6凌梓.基于本体的用户需求发现[J].祖国,2014(14):128-129.
  • 7Missikoff M, Velardi P, Fabriani P. Text mining techniques to au- tomatically enrich a domain ontology. [ J ]. Applied Intelligence, 2003, 18(3) :323 -340.
  • 8Luong H, Gaueh S, Wang Qiang, et al. An ontology learning framework using focused crawler and text mining[ J]. International Journal on Advances in Life Seienees, 2009, 1 ( 2 and 3 ) : 99 - 109.
  • 9魏顺平,何克抗.基于文本挖掘的领域本体半自动构建方法研究——以教学设计学科领域本体建设为例[J].开放教育研究,2008,14(5):95-101. 被引量:14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部