期刊文献+

基于CuBB为阴极缓冲层有机太阳能电池性能的研究 被引量:2

Performance of organic solar cells using CuBB as cathode buffer layer
原文传递
导出
摘要 通过定向合成Cu(I)配合物,首次将其作为阴极缓冲层引入到有机太阳能电池(OSCs)中。实验分析发现,OSCs的光电能量转换效率(PCE)与CuBB层厚度紧密相关,在标准太阳光照条件下,结构为ITO/CuPc(20nm)/C60(40nm)/CuBB(x mm)/Al(100nm)的器件PCE随着CuBB厚度的增加先增大后变小,当厚为8nm时PCE达到0.94%。器件性能提高的原因主要是CuBB具有良好的电子迁移率,但厚度过大时则由于串联电阻增加及电子不能经阴极缓冲层传输而使性能降低。 Organic solar cells (OSCs) have become the most potential photoelectric converter. In this paper,a Cu(I) complex was synthesized and employed in OSCs as cathode buffer layer. The experimental results show that the power conversion efficiency (PCE) of OSCs is closely associated with the thickness of cathode buffer layer. Under AM 1.5 solar illumination,the PCE increases in early stage and then decreases when the structure of OSCs is ITO/CuPc (20 nm)/C60 (40 nrn)/CuBB (x)/A1 (100 nm). When the thickness of CuBB is 8 nm,the maximum efficiency is 0.94%. This can be understood as follows. CuBB has a good electron mobility, when thin CuBB layer decorates the cathode, which can provide a good ohmic contact and is in favor of electron transport. However,when the CuBB layer exceeds 8 nm, series resistor will increase and the electron wonr t transport through cathode buffer layer, then the power conversion efficiency decreases.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第12期2279-2282,共4页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61205040 61405071) 教育部新世纪优秀人才支持计划(NCET-10-0176) 吉林省科技厅项目(201215219 20130521019JH 20140101206JC) 吉林省计算中心公共计算平台和吉林省教育厅(吉教科合字[2014]第152号)资助项目
关键词 CU(I)配合物 阴极缓冲层 有机太阳能电池(OSCs) 能量转化效率(PCE) 电子迁移率 Cu(I) complexes cathode buffer layer organic solar ceils (OSCs) power conversion efficiency (PCE) electron mobility
  • 相关文献

参考文献3

二级参考文献35

  • 1LI Wei-min,GUO Jin-chuan, ZHOU Bin. Theoretics andexpermental study on solar cells with P3HT/PCBM-baseheterojunction interface [J]. Solar energy materials andsolar cells,2012,23(007) :1274-1278.
  • 2MA C Y,Qin W J,Yin S G,et al. Ptasmon-enhanced or-ganic solar cells with solution-processed three-dimension-al Ag nanosheets [J]. Solar Energy Materials and SolarCells,2013,109:227-232.
  • 3WU Bin,LI Yan-wu, LIU Peng-yi, et al. Common and In-verter hereojunction small -molecule organic solar cellJournal of Optelectronic . Laser,2010,21(3) :363-365.
  • 4Zhou Y H,Li F H,Zhang F L,et al. Inverted and transpar-ent polymer solar cells prepared with vacuum-free pro-cessing [J]. Solar Energy Materials and Solar Cells,2009,93(4):497-500.
  • 5Chou C H,Kwan W L,Yang Y,et al. A metal-oxide inter-connection layer for polymer tandem solar cells with aninverted architecture [J]. Advanced Materials, 2011,23(10):1282-1286.
  • 6SONG Peng-fei,QIN Wen-jing, DING Cuo-jing, et al. Anair-stable inverted photovoltaic device using Zn〇 as theelectron selective layer and Mo03 as the blocking layer[J]. Optoelectronics Letters,2011,7(5) *330-333.
  • 7Seo H 0,Park S Y,Lim D C,et al. Ultrathin Ti02 films onZnO electron-collecting layers of inverted organic solarcell[J]. The Journal of Physical Chemistry C, 2011,115(43):21517-21520.
  • 8Dhungel S K,Park J G. Optimization of paste formulationfor Ti〇2 nanoparticles with wide range of size distributionfor its application in dye sensitized solar cells[J]. Renew-able Energy,2010,35(12) :2776-2780.
  • 9Wu Z W,Xu X L,Bai S,et al. Inverted organic solar cellsbased on aqueous processed ZnO interlayers at low tem-perature[ J]. Applied Physics Letters,2012, 100 (20):203906-1-4.
  • 10Krebs F C. Air stable polymer photovoltaics based on aprocess free from vacuum steps and fullerenes[J]. SolarEnergy Materials and Solar Cells,2008.92(7) :715-726.

共引文献7

同被引文献28

  • 1He U X, Xu J, Yan H F. Spectral optimization of warm- white light emitting diode lamp with both color rendering index (CRI) and special CRI of R9 above 90[J]. AlP Ad- vanccs,2011,1(3) :0321601-0321607.
  • 2Han C M, Xie U H, Xu H, et al. A single phosphine oxide host for high-efficiency white organic light emitting diodes with extremely low operating voltages and reduced ef- ficicncy roll-off[J]. Adv Mater,2011,23(21) :2491-2496.
  • 3Chen S M,Tan G P,Wong W Y,et al. White organic light emitting diodes with evenly separated red, green and blue colors for efficiency/color-rendition tradeoff optimization [J]. Adv. Funct. Matcr, 2011,21(19) ,3785-3793.
  • 4Giridhar T,Saravanan G,Cho W,et al. An electron trans- porting unit linked multifunctional IR (Ⅲ) complex: a prom- ising strategy to improve the performance of solution-pro- cessed phesporecent organic light-emitting diodes[J]. Chem Commun, 2014,50 (30) : 4000-4002.
  • 5Yook K S,Lee J Y. Solution processed deep blue phos- phorescent organic light emitting diodes with over 20 % external quantum efficiency [J]. Org. Electron, 2011,12 (10) :1711-1715.
  • 6Li T Y, Liang X, Zhou L, et al. N-heterocyclic carbenes: versatile second cyclometalated ligands for neutral iridi- um(Ⅲ) heteroleptic complexes[J]. Inorg. Chem., 2015, 54(1) : 161-173.
  • 7Najafabadi E, Knauer K A, Haske W, et al. High-perform- ance inverted top-emitting green electrophosphorescent organic light-emitting diodes with a modified top Ag an- ode[J]. Org. Electron, 2013,14(5) : 1271.
  • 8Tang C W,Vanslyke S A. Organic electroluminescent di- odes[J]. Appl. Phys. Lett., 1987,51(12) : 913-915.
  • 9Bolink H J,Brine H,Ooronado E,et al. Hybrid organicinor- ganic light emitting diodes:effect of the metal oxide[J].J. Mater. Chem., 2010,20: 4047-4049.
  • 10Park J S,Lee B R,Lee J M,et al. Efficient hybrid organ- ic-inorganic light emitting diodes with self-assembled di- pole molecule deposited metal oxides, Appl. Phys. Lett., 2010,96(24) : 243306.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部