期刊文献+

具有非高斯相关噪声的目标跟踪 被引量:1

Target robust tracking in clutter environment with non-Gaussian related noise
原文传递
导出
摘要 为实现强杂波背景下视频的鲁棒跟踪,在常用非线性系统模型的基础上引入柯西高斯混合噪声模型,充分考虑了非高斯噪声前后时刻的状态相关性,并以权重条件最小方差为标准,推导了非高斯相关噪声的最优建议分布函数,在粒子滤波框架内实现了非高斯相关噪声模型时系统状态的准确估计。在新算法的框架内采用多特征自适应融合的方法,实现了强噪声背景下视频目标的鲁棒跟踪。实验结果表明,本文方法扩展了粒子滤波的适用范围,有效提升了强噪声环境下视频目标跟踪的精度和稳定性。 In order to realize robust tracking of vehicles in the background of the strong clutter, this paper proposes a new kind of particle filter with non-Gaussian and dependent noise. The target vehicle movement behavior in the clutter environment is modeled by introducing Cauchy-Gaussian mixture noise model into the common nonlinear system model. The nature of noise correlation proposal distribution function is analyzed indetail based on the established motion model, and the mathematical expression of non- Gaussian noise correlati6n optimal proposal distribution function is deduced based on the minimum variance weighting conditions. The detailed implementation steps of the algorithm are shown. Finally,robust tracking of moving vehicles in the background of strong noise is realized in the framework of the proposed method based on multiple features adaptive fusion method. Experimental results show that the proposed method extends the application of particle filter, and effectively improves the vehicle tracking accuracy and stability in the strong noise environment.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第12期2393-2399,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61263031) 江苏省大型工程装备检测与控制重点建设实验室重点(JSKLEDC201202)资助项目
关键词 目标跟踪 粒子滤波 非高斯噪声 相关噪声 多特征融合 object tracking particle filter no-Gaussian noise correlative noise multiple features fusion
  • 相关文献

参考文献19

二级参考文献147

共引文献396

同被引文献19

  • 1Gao C,Zhang T,Li Q.Small infrared target detection using sparse ring representation[J].IEEE Transactions on Aerospace and Electronic Systems Magazine,2012,27(3): 21-30.
  • 2Gao C Q,Meng D Y,Yang Y,et al.Infrared Patch-Image Model for Small Target Detection in a Single Image[J].IEEE Tansactions on Image Processing,2013,22( 12):4996-5009.
  • 3Dong X,Huang X,Zheng Y,et al.Infrared dim and small target dete cting and tracking method inspired by human visual system[J].Infrared Physics and Technology,2014,57:100-109.
  • 4Deng H, Wei Y T, Tong M W.Small target detection based on weighte d self-information map[J].Infrared Physics and Technology,2013,60:197-206.
  • 5Li Y,Li P C,Shen Q.Real-time infrared target tracking based on l1minimization and compressive features[J].Applied Optics,2014,53(28):6518-6526.
  • 6Liu R M,Liu Y H.Infrared target tracking in multiple feature ps eudo-color image with kernel density estimation[J].Infrared Physics and Technology,2012,55: 505-512.
  • 7Li Z Z,Chen J,Gu Y S,et al.Small moving infrared space target tracking algorithm based on probabilistic data association filter[J].Infrared Physics and Technology,2014,63:84-91.
  • 8Liu R M,Li X L,Han L,et al.Track infrared point targets based o n projection coefficient templates and non-linear correlation combined with kalman prediction[J].Infrared Physics an d Technology,2013,57:68-75.
  • 9Bolme D S,Draper B A,Beveridge J R.Average of s ynthetic exact filters[A].Proc.of CVPR[C].2009,5-2112.
  • 10Bolme D S,Beveridge J R,Draper B A,et al.Visual object tracking using adaptive correlation filters[A].Proc.of CVPR[C].2010,4-2550.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部