期刊文献+

变采样率的磁共振图像分块压缩感知 被引量:1

Block-based compressed sensing for MR image with variable sampling rate
原文传递
导出
摘要 提出一种磁共振(MR)图像的变采样率分块压缩感知(BCS,block-based compressed sensing)方法;根据MR图像细节丰富、纹理复杂的特点,引入对图像高维奇异结构具有良好稀疏表示能力的Tetrolet变换,同时考虑到MR图像各切片间的时空相关性,将相邻时序的MR切片组成图片组(GOP),通过计算参考图片与相邻切片的差异,并对参考图片及差异图进行不重叠分块,根据图像块内容变化的快慢自适应分配采样率,获取测量数据,采用平滑投影Landweber(SPL,smooth projected Landweber)算法实现GOP的高质量压缩感知(CS)重构。实验结果表明,Tetrolet变换适用于MR图像的稀疏表示,相较于采用离散余弦变换(DCT)及双树小波变换(DWT)的方法,本文的重构图像的PSNR平均提高了0.92dB与2.06dB;而且对于不同的GOP,采用变采样率方案时,重构图像的质量均优于固定采样率时所得到的结果,为MR图像的CS提供了一种可行的解决方案。 A block-based compressed sensing scheme for magnetic resonance (MR) image with variable sampling rate is proposed. In view of containing the rich details and complex texture of MR image, the Tetrolet transform,which can represent the high dimensional singularity structure of image sparsely,is introduced. Meanwhile,the adjacent slices of the MR image are bound to constitute a group of pictures (GOP) considering the spatio-temporal correlation between contiguous slices, and the disparities of the reference slice with its immediate previous and following slices are calculated to form the difference images. Then,the reference slice and the difference images are partitioned into the no-overlapped blocks to assign sampling rate according to the changes of contents between sequential image blocks. Finally, COP can be reconstructed from measurements by using the projected Landweber algorithm under the compressed sensing framework. The experimental results show that the Tetrolet transform is a suitable sparse representation tool for MR image. Compared with the methods using discrete cosine transform and dual - tree wavelet transform , the PSNR of the reconstructed images is increased by 0.92 dB and 2.06 dB,averagely. Moreover, for diverse COPs, the qualities of the reconstructed images with variable sampling rate are all better than the results obtained from the fixed sampling rate method. This paper provides a feasible scheme for compressed sensing of MR images.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第12期2400-2406,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61271399 61173184) 宁波市自然科学基金(2011A610192 2013A610055) 宁波市科技创新团队研究计划(2011B81002) 宁波大学研究生教育改革重点项目(JGZD1201202) 宁波大学科研基金(XYL12003 XKXL1306)资助项目
关键词 变采样率 分块压缩感知(BCS) Tetrolet变换 时空相关性 磁共振 (MR)图像 variable sampling rate block-based compressed sensing Tetrolet transform spatio-temporalcorrelation magnetic resonance (MR) image
  • 相关文献

参考文献16

  • 1吴骏,孙明明,肖志涛,张芳,耿磊.联合蚁群算法和PCNN的脑部MRI图像分割方法[J].光电子.激光,2014,25(3):614-619. 被引量:15
  • 2Feng X Y, Liu H Q. Functional magnetic resonance ima- ging in China[J]. Chin J med imaging, 2004, ]0 (5) .. 292- 298.
  • 3Donoho D L. Compressed sensing[J]. IEEE Trans. on In- formation Theory, 2006,52(4) : 1289-1306.
  • 4张成,杨海蓉,程鸿,韦穗.基于压缩感知的超分辨率图像重建[J].光电子.激光,2013,24(4):805-811. 被引量:12
  • 5Xiangping S,Jin W,Lingxue K. Scale invariant texture cl- assification via sparse representation [J]. Neurocomput- ing, 2013,122 ( 25 ) .. 338-348.
  • 6Aharon M, Elad M, Bruckstein A, K-SVD.. An algorithm for designing overcomplete dictionaries for sparse represen- tation[J]. IEEE Trans. Signal Process, 2006, 54(11): 4311-4322.
  • 7朱波,李华,高伟,宋宗玺.基于正则化稀疏表示的图像超分辨率算法[J].光电子.激光,2013,24(10):2024-2030. 被引量:10
  • 8ZHAO RuiZhen,LIU XiaoYu,Ching-Chung LI,Robert J. SCLABASSI,& SUN MinGui.Wavelet denoising via sparse representation[J].Science in China(Series F),2009,52(8):1371-1377. 被引量:26
  • 9Mun S,Fowler J E. Block compressed sensing of images using directional transformsEA. Proc. of the International Conference on Image Processing[C]. 2009,3021-3024.
  • 10Chartrand R. Fast algorithms for nonconvex compressive sensing ; MRI reconstruction from very few data[A]. Proc. of Biomedical Imaging: From Nano to Macro, 2009. IEEE [C]. 2009,262-265.

二级参考文献78

  • 1陈烨.用于连续函数优化的蚁群算法[J].四川大学学报(工程科学版),2004,36(6):117-120. 被引量:67
  • 2Park S. Park M, Gang M. Super-resolution image recon- struction= a technical overview[J]. IEEE Signal Process. Mag..2003.20(3) :21-36.
  • 3Zeev Zalevsky, Exceeding the diffraction and the geomet- ric limits of imaging systems.-A Review[A]. Optical Su- percomputing 2010. Lecture Notes in Computer Science [C]. 2011,6478:119-130.
  • 4Gerald Westheimer. Optical superresolution and visual hyperacuity[J]. Progress in Retinal and Eye Research, 2012.31(5) :437-480.
  • 5Lindberg J. Mathematical concepts of optical superresolu- tion[J]. Journal of Optics, 2012,14( 8 ) : 083001.
  • 6Floraine Berthouzoz , Raanan Fattal. Resolution enhance- ment by vibrating displays [J].ACM Transactions on Graphics (TOG) ,2012,31(2):1-14.
  • 7Haidawati Nasir, Vladimir Stankovi., Stephen Marshall. Singular value decomposition based fusion for super-reso- lution image reconstruction [J].Signal Processing : Image Communication, 2012,27 ( 2 ) :180-191.
  • 8Mohammad S, Asloob A. Mudassar Geometric superreso- lution using an optical rectangular mask[J]. Optical Engi- neering,2012,51 ( 1 ) :013203.
  • 9Donoho D. Compressed sensing[J]. IEEE Trans. Inf. Theo- ry, 2006,52 ( 4 ) .. 1289-1306.
  • 10Candes E,Tao T. Near-optimal signal recovery from ran- dom projections and universal encoding strategies [J]. IEEE Trans. Inform. Theory, 2006,52(12) :5406-5245.

共引文献63

同被引文献22

  • 1Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4) ; 1289-1306.
  • 2Candes E J, Romberg J K,Tao T. Robust uncertainty prin- ciples Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Informa- tion Theory, 2006,52 (2) : 489-509.
  • 3Candes E J, Tao T. Near optimal signal recovery from random projections; Universal encoding strategies[J]. IEEE Transactions on Information Theory, 2006,52 (1- 2 ) 5406-5425.
  • 4Wipf D, Nagarajan S. A unified Bayesian framework for MEG/EEG source imaging [J]. Neurolmage, 2008, 44: 947-966.
  • 5Malioutov D,Oetin M,Willsky A. A sparse signal recon- struction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8) : 3010-3022.
  • 6Cichocki A. Blind source separation:New tools for extrac- tion of source signals and denoising[A]. Proc. of SPIE, 2005,5818 : 11-25.
  • 7Malioutov D M,Cetin M,Willsky A S. A sparse signal re- construction perspective for source localization with sen- sor arrays[J]. IEEE Transactions on Signal Processing, 2005,53(8) : 3010-3022.
  • 8Bazerque J A,Giannakis G B. Distributed spectrum sens- ing for cognitive radio networks by exploiting sparsity [J]. IEEE Transactions on Signal Processing, 2010,58(3):1847-1862.
  • 9Mishali M, Eldar Y. Reduce and boost: Recovering arbi- trary sets of jointly sparse vectors[J]. IEEE Transactions on Signal Processing, 2008,56 (10) : 4692-4702.
  • 10Eldar Y C,Rauhut H. Average case analysis of multichan- nel sparse recovery using convex relaxation [J]. IEEE Transactions on Information Theory, 2010,56 ( 1 ) : 505- 519.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部