期刊文献+

基于硅雪崩光电二极管的双光子吸收实验(英文) 被引量:1

Experimental investigation on two-photon absorption in silicon avalanche photodiode
下载PDF
导出
摘要 研究了硅雪崩光电二极管(APD)对光通信波段近红外光子在不同频率、强度,以及APD不同偏压下的双光子吸收效应(TPA)。通过实验详细测量了光频率从186.3 THz到196.1 THz变化时APD的TPA效率,结果表明:随着入射光频率的不断增加,TPA效率呈现出先增大、后减小的规律,并且在190.5 THz附近达到最优效率。此外,在实验中观察到,随着入射光强的增大,TPA效率也呈现出先增大、后减小的现象(此实验中的峰值光强度约10 mW)。 Two-photon absorption(TPA) in Si avalanche photodiode(APD) was investigated for infrared photon in 1550-nm telecom band with different frequencies,intensities,under different bias voltage.By measurement of the TPA efficiency for photon frequency from 186.3 to 196.1 THz in detail,it was found that it decreases when the photon frequency goes up while a certain optimal TPA efficiency is around190.5 THz for the APD under test.It can be observed from the experiments that the TPA efficiency increases until a certain intensity(The peak value of light intensity in this experiment is less than 10 mW)and then it decreases.
出处 《红外与激光工程》 EI CSCD 北大核心 2014年第12期3928-3931,共4页 Infrared and Laser Engineering
基金 国家自然科学基金(11274037) 新世纪优秀人才支持计划(NCET-12-0765) 全国优秀博士学位论文作者专项资助(201236)
关键词 双光子吸收 单光子探测 硅雪崩光电二极管 two-photon absorption single photon detection Si-APD
  • 相关文献

参考文献7

  • 1杨皓,王超,孙志斌,王迪,翟光杰.高速近红外1550nm单光子探测器[J].红外与激光工程,2012,41(2):325-329. 被引量:9
  • 2王红培,王广龙,邱鹏,高凤岐,陈建辉.QDRTD单光子探测技术[J].红外与激光工程,2012,41(10):2659-2663. 被引量:4
  • 3Hayat A, Ginzburg P, Orenstein M. Infrared single-photon detection by two-photon absorption in silicon [J]. Physical Review B, 2008, 77(12): 125219.
  • 4Garcia H. Tunneling assisted two-photon absorption:The nonlinear Franz-Keldysh effect[J]. Physical Review B, 2006, 74(3): 035212.
  • 5Garia H, Kalyanaraman R. Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz- Keldysh effect in indirect gap semiconductors[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39(12): 2737.
  • 6Pan J W, Chen Z B, Lu C Y, et al. Multiphoton entanglement and interferometry [J]. Reviews of Modern Physics, 2012, 84(2): 777.
  • 7Hadfield R H. Single-photon detectors for optical quantum information applications [J]. Nature Photonics, 2009, 3(12): 696-705.

二级参考文献12

  • 1杨春沪,孙东松,李洪敬.光子累计方法在成像激光雷达中的应用研究[J].红外与激光工程,2005,34(5):517-520. 被引量:8
  • 2Li H W, Simmods P, Beere H E, et al. Quantum dot resonant tunneling diodes for telecom wavelength single photon detection[C]//SPIE, 2007, 6766: 67660N.
  • 3Rowe M A, Gansen E J, Greene M, et al. Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency [J]. Applied Physics Letters, 2006, 89: 253505.
  • 4Kardynal B E, Hees S S, Shields A J. Photon number resolving detector based on a quantum dot field-effect transistor [J]. Appl Phys, 2007, 90: 181114.
  • 5Blakesley J C, See P, Shields A J, et al. Efficient single photon detection by quantum dot resonant tunneling diodes [J]. Phys Rev Lett, 2005, 94: 067401.
  • 6Li H W, Simmonds P, Beere H E, et al. Optimization of quantum dot resonant tunneling diodes for fibre wavelength detection[J]. Phys Star Solc, 2006, 3: 4035-4038.
  • 7Vatannia S, Gildenblat G. "Airy"s function implementation of the transfer-matrix method for resonant tunneling in variable spaced finite superlattices [J]. IEEE Journal of Quantum Electronics, 1996, 32: 1093-1105.
  • 8Fu Y, Willander M. Electron wavepacket transport through nanoscale semiconductor device in time domain [J]. Appl Phys, 2005, 97(7): 094311.
  • 9Fu Y, EngstrAom O. Electron wave packet transmission through a Si quantum wire under the influence of an ionized impurity scattering potential [J]. Nanoeleetronics and Optaelectronics, 2006, 1: 108-113.
  • 10McDonald S A, Konstantatos G, Zhang S, et al. Solution- proccessed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nature Material, 2005, 4: 138-142.

共引文献10

同被引文献18

  • 1Beard P. Biomedical photoacoustic imaging [J]. Interface Focus, 2011, 1(4): 602-631.
  • 2Xu M, Wang L V. Photoacoustic imaging in biomedicine [J]. Review of Scientific Instruments, 2006, 77(4): 041101.
  • 3Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology [J]. Nature methods, 2010, 7(8): 603-614.
  • 4Telenkov S A, Mandelis A. Photothermoacoustic imaging of biological tissues: Maximum depth characterization comparison of time and frequency-domain measurements [J]. Journal of Biomedical Optics, 2009, 14(4): 044025.
  • 5Mandelis A. Bioacoustophotonic depth-selective imaging of turbid media and tissues: Instrumentation and measurements [J]. Phys Can, 2006, 62: 83-90.
  • 6Kellnberger S, Deliolanis N C, Queir6s D, et al. In vivo frequency domain optoacoustic tomography [J]. Optics Letters, 2012, 37(16): 3423-3425.
  • 7苗少峰,杨虹,黄远辉,等.光声成像研究进展[J].中国光学,2007,12(6):060503.
  • 8Ntziachristos V, Razansky D. Molecular imaging by means of multispectral optoacoustic tomography (msot) [J]. Chemical Reviews, 2010, 110(5): 2783-2794.
  • 9Cook C. Radar Signals: An Introduction to Theory and Application [M]. Amsterdam: Elsevier, 2012.
  • 10Fan Y, Mandelis A, Spiroug, et al. Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: Theory and experiment [J]. The Journal of the Acoustical Society of America, 2004, 116(6): 3523-3533.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部