期刊文献+

高频视角下微观交易信息对价格波动的影响 被引量:4

Impact of trade information on price volatility in the perspective of high-frequency data
下载PDF
导出
摘要 基于中国股票市场交易持续期的分布形态,构建Weibull分布下的三状态非对称ACD模型刻画价格运动的动态模式,推导出瞬时波动率的计算公式,采用参数自举法模拟出价格的瞬时波动路径,通过脉冲响应分析考察由特定交易变量构成的脉冲交易对价格波动的冲击模式.结果表明交易持续期是影响价格瞬时波动变化的重要因素,脉冲交易引起的瞬时波动跃动的衰减速度较快,反映出市场投资者对交易信息具有短期的过度反应现象. Based on the distribution pattern of trade duration in Chinese stock markets, the paper constructs a three-state asymmetric ACD model under the Weibull distribution to depict the price dynamics, induces the formula of instantaneous volatility, then uses parametric bootstraps method to simulate the path of instantaneous volatility, so as to investigate the impact of impulsive trades composed of specific trade variables on price volatility. The results show that trade duration is an important factor affecting the change of price instantaneous volatility, and the bounce of instantaneous volatility caused by the process that micro-trade information melts into price decays quickly, which reflect the investors have short-term overreaction on the trade information.
出处 《系统工程学报》 CSCD 北大核心 2014年第6期780-790,共11页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(71271146) 教育部"创新团队发展计划"资助项目(IRT1028)
关键词 微观交易信息 非对称ACD模型 瞬时波动 脉冲交易 参数自举法 micro-trade information asymmetric ACD model instantaneous volatility impulsive trade para-metric bootstraps
  • 相关文献

参考文献14

  • 1Andersen T G, Bollerslev T. Heterogeneous information arrivals and return volatility dynamics: uncovering the long run in high- frequency returns[J]. Journal of Finance, 1997, 52(3): 975-1005.
  • 2Andersen T G, Bollerslev T. Intraday periodicity and volatility persistence in financial markets[J]. Journal of Empirical Finance, 1997, 4(2/3): 115-158.
  • 3Anderson T G, Bollerslev T. DM-dollar volatility: Intraday activity patterns, macroeconomic announcements, and long-run depen- dencies[J]. Journal of Finance, 1998, 53(1): 219-265.
  • 4Nelson D B. Filtering and forecasting with misspecified ARCH models I: Getting the right variance with the wrong model[J]. Journal of Econometrics, 1992, 52(1): 61-90.
  • 5Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2): 579-625.
  • 6Barndorff-Nielsen O E, Shephard N. Econometric analysis of realised volatility and its use in estimating stochastic volatility mod- els[J]. Journal of the Royal Statistical Society: Series B, 2002, 64(2): 253-280.
  • 7杨科,陈浪南.中国股市高频波动率跳跃的特征分析[J].系统工程学报,2012,27(4):492-497. 被引量:9
  • 8Ghysels E, Jasiak J. GARCH for irregularly spaced financial data: the ACD-GARCH models[J]. Studies in Nonlinear Economics and Econometrics, 1998, 2(4): 133-149.
  • 9Engle R E The econometrics of ultra-high frequency data[J]. Econometrica, 2000, 68(1): 1-22.
  • 10Bauwens L, Giot P. Asymmetric ACD models: Introducing price information in ACD models[J]. Empirical Economics, 2003, 28(4): 709-731.

二级参考文献12

  • 1Vortelinos D I, Thomakos D D. Realized volatility and jumps in the Athens stock exchange[J]. Applied Financial Economics, 2012, 22(2): 97-112.
  • 2Nielsen B, Shephard O E N. Econometric analysis of realised covariation: High frequency covariance, regression and correlation in financial economics[J]. Econometrica, 2004, 72(3): 885-925.
  • 3I Nielsen B, Shephard O E N. Impact of jumps on returns and realized variances: Econometric analysis of time-deformed levy process [J]. Journal of Econometrics, 2006, 131 (2): 217-252.
  • 4Huang X, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics, 2005, 3(4): 456-499.
  • 5Corsi F, Pirino D, Reno R. Threshold bipower variation and the impact of jumps on volatility forecasting[J]. Journal of Econometrics, 2010, 159(2): 276-288.
  • 6Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2): 579-625.
  • 7Nielsen B, Shephard O E N. Realized power variation and stochastic volatility[J]. Bernoulli, 2003, 9(2): 243-265.
  • 8Hansen P R, Lunde A. Realized variance and market microstructure noise[J]. Journal of Business and Economic Statistics, 2006, 24(2): 127-161.
  • 9Fan J, Yao Q. Nonlinear Time Series[M]. New York: Springer-Verlag, 2003: 313-399.
  • 10Engle R F, Russell J R. Autoregressive conditional duration: A new model for irregularly spaced transaction data[J]. Econometrica, 1998, 66(5): 1127-1162.

共引文献8

同被引文献73

  • 1王新宇,宋学锋,吴瑞明.基于AAVS-CAViaR模型的股市风险测量研究[J].系统工程学报,2010,25(3):326-333. 被引量:13
  • 2魏宇,余怒涛.中国股票市场的波动率预测模型及其SPA检验[J].金融研究,2007(07A):138-150. 被引量:43
  • 3Hamilton J D. Historical oil shocks // Routledge Handbook of Major Events in Economic History. New York: Routledge Taylor andFrancis Group, 2013.
  • 4Mensi W, Hammoudeh S, Yoon S M. How do OPEC news and structural breaks impact returns and volatility in crude oil markets?Further evidence from a long memory process. Energy Economics, 2014,42(2): 343—354.
  • 5Zhang X, Yu L, Wang S, et al. Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method.Energy Economics, 2009, 31 (5): 768 — 778.
  • 6Lin S X,Tamvakis M. OPEC announcements and their effects on crude oil prices. Energy Policy, 2010, 38(2): 1010-1016.
  • 7Hanabusa K. The effect of 107th OPEC ordinary meeting on oil prices and economic performances in Japan. Renewable and Sus-tainable Energy Reviews, 2012, 16(3): 1666-1672.
  • 8Schmidbauer H, Rosch A. OPEC news announcements: Effects on oil price expectation and volatility. Energy Economics, 2012,34(5): 1656-1663.
  • 9Draper D W. The behavior of event-related returns on oil futures contracts. Journal of Futures Markets, 1984,4(2): 125-132.
  • 10Deaves R I, Krinsky I. The behaviour of oil futures returns around OPEC conferences. Journal of Futures Markets, 1992,12(5):563-574.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部