期刊文献+

基于多特征和级联分类器的行人检测算法 被引量:2

Pedestrian detection algorithm with multiple feature and cascade classifier
下载PDF
导出
摘要 针对静态图像中的人体检测问题,文章提出一种由粗到精的级联分类器人体检测算法,并改进多尺度方向(multi-scale orientation,简称MSO)特征和多尺度梯度方向直方图(Multi-scale Histograms of Oriented Gradients,简称Multi-scale HOG)特征。粗分类器采用扩展的MSO(extended multi-scale orientation,简称EMSO)特征和Adaboost级联训练得到,精分类器采用基于WTA(winner-takes-all)hash编码的Multiscale HOG(WMHOG)特征和相交核支持向量机(intersection kernel support vector machines,简称IKSVM)级联训练得到。在法国国家信息与自动化研究所(INRIA)和TUD-Brussels公共测试集上的实验结果表明,文中所提出的方法检测速度和检测率与当前代表性人体检测算法相比均有明显提高。 A coarse‐to‐fine cascade detector is proposed for the human detection problem in static images ,which uses extended multi‐scale orientation(EMSO) feature and multi‐scale Histograms of Oriented Gradients(multi‐scale HOG) feature based on winner‐takes‐all(WTA) hash .The coarse level detector employs EMSO and the Gentle Adaboost(GAB) cascade training ;the fine level detector applies multi‐scale HOG feature based on WTA hash encoding and intersection kernel support vector machines(IKSVM) cascade training .The results of the experiment on the INRIA and TUD‐Brussels public test set show that the presented method remarkably outperforms the current human detection algorithms in both detection speed and detection rate .
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第12期1456-1461,共6页 Journal of Hefei University of Technology:Natural Science
基金 安徽省科技攻关计划资助项目(1301b042017 1301b042014)
关键词 扩展的多尺度方向特征 多尺度梯度方向直方图 相交核支持向量机 extended multi-scale orientation(EMSO) feature multi-scale Histograms of Oriented Gra-dients(multi-scale HOG) intersection kernel support vector machines(IKSVM)
  • 相关文献

参考文献20

  • 1Li L Y, Leung M K H. Unsupervised learning of human perspective context using ME-DT for efficient human de- tection in surveillance[-C]//Proceeding of the IEEE Inter- national Conference on Computer Vision and Pattern Rec- ognition, Anchorage, AK, 2008 : 1 - 8.
  • 2Kratz L, Nishino K. Tracking pedestrians using local spatio- temporal motion patterns in extremely crowded scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intel ligence, 2012,34(5) : 987- 1002.
  • 3Li W T, Chang H S, Lien K C, et al. Exploring visual and motion saliency for automatic video object extraction[-J]. IEEE Transactions on Image Processing, 2013, 22 (7) : 2600-2610.
  • 4Geronimo D,Lopez A M,Sappa A D,et al. Survey on pedes trian detection for advanced driver assistance systems[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2010,32 (7) : 1239- 1258.
  • 5Dolldr P, Wojek C, Schiele B, et al. Pedestrian detection = an evaluation of the state of the art[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 (4) ,743-761.
  • 6Aggarwal J, Ryoo M. Human activity analysis: a review [J]. ACM Computing Surveys,2011,43(3) :1-47.
  • 7Mohan A,Papageorgiou C,Poggio T. Example-based object detection in images by components[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23 (4) : 349-361.
  • 8Dalal N,Triggs B. Histograms of oriented gradients for hu- man detection[-C]//Proceeding of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005 : 886-893.
  • 9Felzenszwalb P, Girshick R, McAllester D, et al. Object de- tection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2010,32(9) : 1627- 1645.
  • 10Lin Zhe, Hua Gang, Davis L S. Multi-scale shared features for cascade object detectionFC//Proceeding of the IEEE International Conference on Image Processing, Orlando, FL, 2012 : 1865- 1868.

二级参考文献11

共引文献27

同被引文献5

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部