期刊文献+

非参数函数型递归核估计的收敛速度 被引量:1

Convergence rate of recursive kernel estimation of nonparametric regression with functional responses
下载PDF
导出
摘要 文章考虑当响应变量和解释变量都是函数型时的非参数核回归模型,将经典的N-W核估计量推广为一族递归核估计量,并且利用Kolmogorov熵的方法和函数型数据的基本方法,得到递归估计量在独立情形下的一致收敛速度。 T his paper considers the nonparametric kernel regression model w hen the response variable and the explanatory variable are functional .The classical N‐W kernel estimator is generalized to a class of recursive kernel estimator ,and by using the Kolmogorov’s entropy and some basic methods of functional data ,the rate of almost uniform complete convergence of the recursive estimator is obtained for independent identically distributed(i .i .d .) functional time series data .
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第12期1528-1531,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家统计局全国统计科研计划资助项目(2012LY080) 安徽省教学研究资助项目(2012jyxm056)
关键词 递归估计量 一致收敛速度 函数型响应变量 recursive estimator almost uniform convergence rate functional response variable
  • 相关文献

参考文献12

  • 1Amiri A. Recursive regression estimators with application to nonparametric prediction[J]. Journal of Nonparametric Statistics, 2012,24(1) 169-186.
  • 2丁洁,凌能祥.基于相依函数型数据条件均值函数估计的渐近性质[J].合肥工业大学学报(自然科学版),2011,34(7):1104-1107. 被引量:2
  • 3Ramsay J O, Silverman B W. Applied functional data anal- ysis: methods'and case studies[M]. New York: Springer, 2002: 10- 50.
  • 4Ferraty F, Vieu P. Nonparametric functional data Analy- sis: theory and practice [ M ]. Berlin: Springer, 2006 : 43- 44,234- 238.
  • 5Ferraty F, Romain Y. Handbook on functional data analy sis[M]. Oxford:Oxford University Press, 2010:15-40.
  • 6Ramsay J O, Silverman B W. Functional data analysis[M]. New York: Springer, 2005 : 54-89.
  • 7Ferraty F, Laksaci A, Tadj A, et al. Rate of uniform con- sistency for nonparametric estimates with functional varia- bles[J]. Journal of Statistical Planning and Inference, 2010,140(2) 335-352.
  • 8Amiri A, Crambes C, Thiam B. Recursive estimation of nonparametric regression with functional covariate[J/OL]. ( 2012 11-12 ). [ 2013-03:05 ]. http://arxiv, org/ abs/1211. 2780.
  • 9Ferraty F, Laksaci A, Tadj A, et al. Kernel regression with functional response [J]. Electronic Journal of Statistics, 2011,5(11) 159-171.
  • 10Ferraty F, Van Keilegom I, Vieu P. Regression when both response and predictor are functions[J]. Journal of Multivariate Analysis,2012, 109(.1) 10-28.

二级参考文献24

  • 1Robinson R. Robust nonparametric autoregression [J]. Lecture Notes in Statistics, 1984,26 : 247-255.
  • 2George G, Roussas R. Nonparametrie regression estimation under mixing conditions [J]. Stochastic Processes and Their Applications, 1990,36 (1) : 107-116.
  • 3Ramsay J O,Silverman B W. Functional data analysis[M]. New York: Springer, 1997 : 5-50.
  • 4Ramasy J, Silverman B. Applied functional data analysis: methods and ease studies [M]. New York: Springer, 2002:10-50.
  • 5Ferraty F,Vieu P. Nonparametric funcional data analysis: theory and practice [M]. Berlin,Springer,2006 : 5-20.
  • 6Ferraty F,Laksaci A,Tadj A,et al. Rate of uniform consis tency for nonparametric estimates with functional variables [J]. J of Statist Planning and Inference, 2010, 140(2): 335-352.
  • 7Kolmogorov A N, Tikhomirov V M. e-entropy and s-capaci ty[J]. Uspekgi Mat. Nauk, 1959,14 : 3-86.
  • 8Kuelbs J,Li W. Metric entropy and the small ball problem for Gaussian measures [J]. J Funct Anal, 1993, 116: 133-157.
  • 9Theodoros N, Yannis G Y. Rates of convergence of esti mate, Kolmogorov entropy and the dimensionality reduc tion principle in regression[J]. Ann Statist, 1997,25 (6): 2493-2511.
  • 10Samanta M. Non-parametric estimation of conditional quantiles[J].Statistics & Probability Letters,1989,(05):407-412.doi:10.1016/0167-7152(89)90095-3.

共引文献5

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部