期刊文献+

Hilbert空间中一阶非线性发展方程的反周期解问题

Anti-periodic Solutions for the First Order Nonlinear Evolution Equations in Hilbert Space
下载PDF
导出
摘要 给出了Alain Haraux在1989年研究非线性发展方程反周期解所得结论的新的证明方法,研究了一类一阶非线性发展方程的反周期解的存在性和唯一性问题. It gave a new proof method of Alain Haraux's theorem which was obtained by studying anti-periodic solutions to some nonlinear evolution equations in 1989. Then,it studied the existence and uniqueness of anti-periodic solutions for a class of the first order semilinear evolution equation.
出处 《广东工业大学学报》 CAS 2014年第4期74-78,共5页 Journal of Guangdong University of Technology
关键词 非线性 发展方程 反周期解 nonlinear evolution anti-periodic solutions
  • 相关文献

参考文献18

  • 1Okochi H. On the existence of periodic solutions to nonlin- ear abstract parabolic equations [ J ]. J Math, 1988,40 ( 3 ) : 541-553.
  • 2Haraux A. Anti-periodic solutions of some nonlinear evolu- tion equations [ J ]. Manuseripta Math, 1989,63 ( 4 ) : 479- 505.
  • 3Aflabizadeh A R,Aizieovici S, Pavel N H . On a class of second-order anti-periodic boundary value problems [ J ]. J Math Anal Appl, 1992,171 ( 2 ) : 301-320.
  • 4Aftabizadeh A R, Aizicovici S, Pavel N H. Anti-periodic boundary value problems for higher order differential equa- tions in Hilbert spaces [ J ]. Nolinear Anal, 1992,18 ( 3 ) : 253-267.
  • 5Liu Zhen-hai. Antiperiodic solutions to nonlinear evolution equations [ J ]. Journal of Functional Analysis, 2010, 258 (6) :2026-2033.
  • 6Luo Zhiguo , Shen Jianhua, Nieto J J. Antiperiodic boundary value problem for first-order impulsive ordinary differential equations [ J ]. Appl Math Comput, 2005,49 ( 2-3 ) : 253- 261.
  • 7Chen Y Q. Note on Massera' s theorem on anti-periodic so- lution[ J]. Advances in Math Sci and Appl, 1999,9 (1): 125-128.
  • 8Chen Y Q ,0' Regan D, Raivi P Agarwal. Anti-periodic solu- tions for evolution equations associated with monotone type mappings [ J ]. Applied Mathematics Letters, 2010, 23 ( 11 ) :1320-1325.
  • 9Chen Y Q, Nieto J J, O' Regan D. Anti-periodic solutions for fully nonlinear first-order differential equations [ J ]. Math Computer Modelling, 2007,46 ( 9-10 ) : 1183-1190.
  • 10Chen Y Q, J Nieto J, O' Regan D. Antiperiodic solutions for evolution equations associated with maximal monotone mappings [ J ]. Applied Mathematics Letters,2011,24 ( 3 ) : 302-307.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部