期刊文献+

基于蚁群算法的机械故障智能诊断方法研究 被引量:1

Research on Intelligent Diagnosis Method of Machinery Fault Based on Ant Colony Algorithm
下载PDF
导出
摘要 介绍了蚁群算法基本原理,实验验证了蚁群聚类算法可用于轴承故障诊断,对比蚁群算法和BP神经网络在故障诊断中的不同,分析了蚁群算法在故障模式识别中的特点。 The basic principles of ant colony algorithm is introduced,and it is proved that the ant colony clustering algorithm can be used for bearing fault diagnosis through experiments,and the difference between ant colony algorithm and BP neural network in fault diagnosis is compared,and the characteristics of ant colony algorithm in fault pattern recognition is analyzed.
作者 吴伟 桂博翔
出处 《机械研究与应用》 2014年第6期15-17,共3页 Mechanical Research & Application
关键词 蚁群算法 BP神经网络 聚类分析 ant colony algorithm BP neural network clustering analysis
  • 相关文献

参考文献3

二级参考文献16

  • 1Loukis E., Methology for the Design of Automation Gas Turbine Diagnostic System[J], Am. Soc. Mech. Eng. Pap. 1993 International Gas Turbine and aeroengine Congress and Exposition, 1993: 18-33
  • 2Ingleby, M; Ronval, G.P.L.Automatic taxonomy and modal analysis for vibration diagnosis.IEE Conference Publication n341-13 2001Publ by IEE
  • 3A.Colorni,M.Dorigo,V.Maniezzo.Distributed optimization by ant colonies[C].Proceedings of the First European Conference on Artificial Life,ECAL'91.Elsevier,Paris,France,1992:34-142.
  • 4Johann Dreo,Patrick Siarry.A new ant colony algorithm using the heterarchical concept aimed at optimization of multi-minima continuous functions[J].ANTS 2002 LNCS.Berlin,Heidelberg:2002,2463:216-221.
  • 5M.Dorigo,V.Maniezzo,A.Colorni.Ant system:optimization by a colony of cooperating agents[J].IEEE Trans.,1996,26 (1):29-41.
  • 6J.Walter,Gutjahr.A Graph-based Ant System and its Convergence[J].Future Generation Computer System,2000,16:837-888.
  • 7James M,Marcus R.Anti-pheromone as a tool for better exploration of search space[C].Proc of 3rd Int.Workshop on Ant Algorithms.Brussels,2002:100-110.
  • 8Gambardella L M,Dorigo M.Solving symmetric and asymmetric TSPs by ant colonies[C].Proc of the IEEE Conf on Evolutionary Computation.Nagoya,1996:622-627.
  • 9Sorsa Timo,Koivo Heikki N.Application of artificial neural networks in process fault diagnosis[J].Automatica,1993,29 (4):843-849.
  • 10Shen Lixiang,Tay Francis E.H.Tay,et al.Fault diagnosis using rough sets theory[J].Computers in Industry,2000,43(1):61-72.

共引文献120

同被引文献14

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部