期刊文献+

Hamilton体系下阶梯梁的辛求解与实验验证 被引量:1

Sympletics Solution Method for Multiple-steps Beam in the Hamilton System and Experimental Verification
下载PDF
导出
摘要 在哈密顿体系中,用辛数学方法求出了阶梯梁自由振动的固有频率和结构振型,并进行试验验证。通过对具有3个阶梯的两端固支阶梯梁进行实验验证,得到了实测的前4阶固有频率和对应的结构振型。结果表明,辛数学方法所得到的频率和振型与实测结果符合很好,其可靠性与准确性得到了验证,同时,可以很好的保证结果的完备性和收敛性。 In the Hamiltonian system,analysis the natural frequencies and modalofmultiple-steps beamby symplectic mathematics of,and use experimentto verify. By clamped at both ends of the multiple-steps beam which has three steps with experimental verification has been measured in the first four natural frequencies and mode shapes corresponding to the structure.The resultsshowed that frequency and vibration of symplectic mathematicsby experimental. And the result has good completeness and convergence.
出处 《机械研究与应用》 2014年第6期95-97,101,共4页 Mechanical Research & Application
关键词 HAMILTON体系 阶梯梁 辛数学 Hamiltonian system multiple-steps beam symplecticmanthematics
  • 相关文献

参考文献10

二级参考文献32

  • 1Jang S K, Bert C W. Free vibrations of stepped beams: exact and numerical solutions [J]. Journal of sound and vibration, 1989, 130(2): 342-346.
  • 2Naguleswaran S. Natural frequencies, sensitivity and mode shape details of an Euler-Bemoulli beam with one step change in cross-section and with ends on classical supports [J]. Journal of sound and vibration. 2002, 252(4): 751-767.
  • 3Naguleswaran S. Transverse vibration of an Euler-Bernoulli beam on resilient end supports and with step changes in cross-section[J]. International journal of mechanical sciences. 2003; 44(12): 2541-2555.
  • 4McCallion H. Vibration of linear mechanical system [M]. London: Longman, 1973.
  • 5Bokaian A. Natural frequencies of beams under compressive axial loads [J]. Journal of sound and vibration, 1988, 126(1): 49-65.
  • 6Bokaian A. Natural frequencies of beams under tensile axial loads [J]. Joumal of Sound and Vibration. 1990, 142(3): 481-498.
  • 7Naguleswaran S. Vibration and stability of an Euler-Bemoulli beam with up to three-step changes in cross-section andin axial force [J]. International journal of mechanical sciences, 2003, 45(9): 1563-1579.
  • 8Kameswara R A, Misra S. A note on generally restrained beams [J]. Journal of sound and vibration, 1989, 130(3): 453-465.
  • 9Zhou J, Yang B. Strip distributed transfer function method for analysis of plates [J]. Intemational journal for numerical method in engineering, 1996, 39(11): 1915-1932.
  • 10Naguleswaran S. Vibration of an Euler-Bernoulli beam on elastic end supports and with up to three step changes in cross-section [J]. International journal of mechanical sciences, 2002, 44(12): 2541-2555.

共引文献165

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部