期刊文献+

直接甲烷SOFC NiCu-CeO_2阳极的制备与性能 被引量:2

Preparation and performance of Ni Cu-CeO_2 anode for direct methane SOFC
下载PDF
导出
摘要 将Ni Cu-Ce O2作为抗积碳阳极材料,应用于阳极支撑型直接甲烷固体氧化物燃料电池(SOFC)中。采用浸渍工艺在多孔Ce O2阳极基体中制备Ni Cu阳极催化剂,还原后氧化物基体与金属的质量比为60∶40。在700℃湿H2和湿CH4气氛中考察了电池的电化学性能。Ni Cu-Ce O2|GDC|BCFN电池在H2和CH4中的开路电压(OCV)分别为0.772和0.785 V,最大功率密度(MPD)分别为96和80 m W/cm2。在0.6 V进行恒压稳定性测试20 h后,电流密度下降了1.7%。通过对测试后的电池进行电子扫描电镜(SEM)和能量散射光谱(EDS)分析,发现有少量积碳产生。而Ni-Ce O2|GDC|BCFN电池在同样条件下的性能仅为:OCV(H2)=0.77 V,OCV(CH4)=0.80 V,MPD(H2)=116 m W/cm2,MPD(CH4)=59 m W/cm2,电池在40 min内电流密度下降了74%。结果表明在阳极中添加Cu不仅能够实现与Ni基阳极相当的阳极性能,而且可以有效提高Ni基阳极的抗积碳稳定性。 The resistive deposition carbon anode material of NiCu-CeO2 was fabricated for utilization of anode-supporting direct methanesolid oxide fuel cells. The anode catalyst of NiCu was prepared in porous anode matrix of CeO2 by impregnation methocl and the weight ratio of oxide matrix and metal was 60 : 40 after reduction. In the atmosphere of damp H2 and CH4 at 700℃, electrochemical performance of the cell was investigated. The open-circuit voltage(OCV) of NiCu-CeO21GDCIBCFN cell was 0.772 and 0.785 V; maximum power density(MPD) was respectively 96 and 80 mW/cm^2. .The current density shows only 1.7% degradation after 20 h stability test at a constant voltage of 0.6 V. Very little deposition carbon was detected in the anode by SEM and EDS analysis. The performance the of Ni-CeO21GDCIBCFN cell at the same conditions was as follw: OCV(H2)=0.T7 V, OCV(CH,)=0.80 V, MPD(H2)=116 mW/cm^2 and MPD(CH4)=59 mW/cm^2. The current density decreases by 74% in 40 min. The results demonstrate it can not only achieve the comparative anode performance, but also improve the stability of resistive deposition carbon by adding Cu into Ni-based anode.
出处 《电源技术》 CAS CSCD 北大核心 2014年第12期2270-2273,共4页 Chinese Journal of Power Sources
基金 教育部新世纪人才计划资助(80051803) 教育部留学回国人员科研启动基金资助(L02003)
关键词 碳基燃料 抗积碳 金属陶瓷 阳极支撑 固体氧化物燃料电池 carbon-based fuel resistive deposition carbon cermet anode-supporting solid oxide fuel cells
  • 相关文献

参考文献10

  • 1PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocar- bons in a solid-oxide fuel cell[J]. Nature, 2000, 404:265-267.
  • 2MURRAY E P, TSAI T, BARNETT S A. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400:649-651.
  • 3GORTE R J, PARK S, VOHS J M, et al. Anodes for direct oxida- tion of dry hydrocarbons in a solid-oxide fuel cell [J]. Advanced Materials, 2000, 19(12): 1465-1469.
  • 4GORTE R J, VOHS J M. Novel SOFC anodes for the direct elec- trochemical oxidation of hydrocarbons [J]. Journal of Catalysis, 2003, 216(1/2): 477-486.
  • 5HUANG T J, JHAO S Y. Ni-Cu/samaria-doped ceria catalysts for steam reforming of methane in the presence of carbon dioxide[J]. Applied Catalysis A: General, 2006, 302(2): 325-332.
  • 6STEELE B C H. Running on natural gas[J]. Nature, 1999, 400: 620-621.
  • 7ZHAN Z L, LEE S I. Thin film solid oxide fuel cells with copper cermet anodes[J]. Journal of Power Sources, 2010, 195:3494-3497.
  • 8WANG Z C, WENG W J, CHENG K, et al. Catalytic modification of Ni-Sm-doped ceria anodes with copper for direct utilization of dry methane in low-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2008, 179:541-546.
  • 9韩敏芳,李伟.微波引发凝胶制备陶瓷粉体的方法:中国,CN101575214[P].2009-11-11.
  • 10SUNG P Y, HAN J H, SUK W N, et al. Improvement of anode performance by surface modification for solid oxide fuel cell run- ning on hydrocarbon fuel [J]. Journal of Power Sources, 2004, 136: 30-36.

共引文献1

同被引文献7

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部