期刊文献+

基于情感依存元组的新闻文本主题情感分析 被引量:2

Topic sentiment analysis of Chinese news based on emotional dependency tuple
原文传递
导出
摘要 以情感依存元组(EDT)作为中文情感表达的基本结构,把新闻文本主题情感倾向性判别任务分成主题识别、情感倾向性分析和主客观分类三个逐层递进的子任务。在主题识别前先对TF-IDF方法进行改进,再结合基于交叉熵方法提取主题特征词,同时考虑了新闻文章标题的主题表征作用,将标题词纳入主题特征集;然后基于空间向量模型计算句子与主题特征向量的相似度,在此基础上考虑句子位置、长度及句子与标题的相似度,计算句子的主题相关度以抽取主题句;最后建立情感依存元组判别模型计算主题句的情感,采用主、客观分类规则筛选出新闻倾向关键句。本方法在COAE 2014评测中各项指标皆逼近最好成绩,表明基于情感依存元组的分类方法具有较高的分类性能。 Taking the emotional dependency tuple (EDT) as the basic structure of Chinese emotional expression, the news text theme emotion recognition task was divided into Ihree progressive sub-tasks: topics identification, emotional tendentiousness analysis, subjective and objective classification. TF-IDF method was improved before identifying the topic, and then the cross-entropy-based method was combined to extract themes feature words. The topic representation of the news title was taken into consideration at the same time, and the title words were put into the theme feature set. The similarity between sentence and the topic feature vector was calculated based on the vector space model. Some sta- tistical rules such as sentence position, sentence length and sentence' s similarity with title were added on this foundation to get topic sentences. Finally, the emotional dependency tuple discriminant model was established to calculate sen- tences emotion and the subjective and objective judgment rule were used to filter out the tendency key sentence. The ap- proaching to the best results of experiment based on COAE 2014 evaluation data shows that the classification method based on the EDT has high classification performance.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2014年第12期1-6,11,共7页 Journal of Shandong University(Natural Science)
基金 湖南省自然科学基金资助项目(11JJ6047,13JJ4076) 湖南省教育厅优秀青年项目(13B101) 南华大学重点学科和创新团队建设基金资助项目 衡阳市科技局科技计划项目(2013KG66,2013KG67)
关键词 情感分析 情感依存元组 主题情感 倾向关键句 sentiment analysis emotional dependency tuple theme emotional tendency key sentence
  • 相关文献

参考文献12

  • 1赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. 被引量:543
  • 2姚天昉,程希文,徐飞玉,汉思·乌思克尔特,王睿.文本意见挖掘综述[J].中文信息学报,2008,22(3):71-80. 被引量:106
  • 3KIM S M, HOVY E. Automatic detection of opinion beating words and sentences [ C ]//Proceedings of the IJCNLP 2005. Morristown: ACL, 2005:61-66.
  • 4TURNEY P D. Thumbs up or down Semantic orientation applied to unsupervised of reviews [ C ]//Proceedongs of 40th Annual Meeting of the Association for Computation Linguistics. Somerset: ACL, 2002:417-424.
  • 5PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques [ C ]// Proceedings of the 2002 Conference on Empirical Methods In Natural Language Processing. Somerset: ACL, 2002:79-86.
  • 6朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 7韩忠明,张玉沙,张慧,万月亮,黄今慧.有效的中文微博短文本倾向性分类算法[J].计算机应用与软件,2012,29(10):89-93. 被引量:39
  • 8冯时,付永陈,阳锋,王大玲,张一飞.基于依存句法的博文情感倾向分析研究[J].计算机研究与发展,2012,49(11):2395-2406. 被引量:34
  • 9MATSUMOTO S, TAKAMURA H, OKUMURA M. Sentiment classification using word sub-sequences and dependency sub- trees [ C ]//Proc of 9th Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2005:301-311.
  • 10WU Yuanbin, ZHANG Qi, HUANG Xuanjing, et al. Phrase dependency parsing for opinion mining[ C]//Proceedings of 47th Annual Meeting of the Association for Computational Linguistics. Somerset :ACL, 2009:1533-1541.

二级参考文献121

共引文献1174

同被引文献19

  • 1Rousseau F, Vazirgiannis M. Graph-of-word and TW-IDF: new approach to ad hoe IR [ C3. New York:ACM,2013: 59-68.
  • 2Kherwa P,Sachdeva A,Mahajan D,et al. An approach to- wards comprehensive sentimental data analysis and opin- ion mining [ EB/OL]. [ 2014-10-16 ]. 10. ll09/IAdCC. 2014.6779394.
  • 3Pang Bo, Lee L. A sentimental education:Sentiment analy- sis using subjectivity summarization based on minimum cuts [ EB/OL ]. [ 2014-10-23 ]. 10. 3115/1218955. 1218990.
  • 4杜振雷,张仰森,李文坤,等.基于多特征融合的中文微博情感分类方法研究[c].第五届中文倾向性分析评测研讨会,2013:44-49.
  • 5朱艳辉,杜锐,鲁琳,等.中文文本情感分析与比较句的识别研究[c].第五届中文倾向性分析评测研讨会,2013:34-43.
  • 6刘志广,董喜双,关毅.中文微博情感倾向性研究[C].第五届中文倾向性分析评测研讨会,2013:81-87.
  • 7蒋飞,刘奕群,张敏,等.THUIR-SENTI:COAE2013测评报告[EB/OL].[2013-10-17].http://wenku.55.1a/P一93139.html.
  • 8徐琳宏,林鸿飞,潘宇,任惠,陈建美.情感词汇本体的构造[J].情报学报,2008,27(2):180-185. 被引量:384
  • 9黄晓斌,赵超.文本挖掘在网络舆情信息分析中的应用[J].情报科学,2009,27(1):94-99. 被引量:114
  • 10樊娜,蔡皖东,赵煜,李慧贤.中文文本情感主题句分析与提取研究[J].计算机应用,2009,29(4):1171-1173. 被引量:10

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部