摘要
将凸多面体欧几里得欧拉公式推广到多维空间情形,得到了凸多维图形数量关系公式。在小于四维空间中,高维空间被低维空间所截满足任意交点或交线不重合情况下,给出了点、线、面、体的具体数量关系公式。
Convex multidimensional graphical quantitative relation formula is got by putting the convex polyhedron Euclidean Euler's formula up to the multidimensional space. The relationship formula of the number of point,line,face and body is given when low dimensional space cut up high dimensional space without overlapping of the crossover point or intersecting line in less than four dimensional space.
出处
《浙江科技学院学报》
CAS
2014年第6期401-404,共4页
Journal of Zhejiang University of Science and Technology
基金
国家自然科学基金项目(11171306)
关键词
凸多面体
欧几里得
欧拉公式
维数图形
convex polyhedron
Euclidean
Euler's formula
dimension graphics