期刊文献+

It型随机抛物型神经网络的指数稳定性

Exponential stability of It stochastic parabolic neural networks
原文传递
导出
摘要 由高斯白噪声驱动的It型随机抛物型神经网络的稳定性,利用随机Lyapunov稳定性理论,Halanay不等式、改进的积分不等式,得到了与扩散项及时滞相关的稳定性判据,该条件在实际中容易验证,最后给出了数值算例,验证所得结果的有效性. A class of Ito^stochastic parabolic neural networks model was considered.The exponential stability condition of the systems was developed by using stability theory of stochastic system and improved integral inequality.The conditions were diffusion -dependent,which was clearly more accurate than the Poincare -type inequality in previously reported literatures.Finally,a numerical simulation example was provided to illustrate the feasibility and effective of the proposed method.
作者 赵碧蓉
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2014年第4期79-83,共5页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 广州市属高校科技计划资助项目(08C018)
关键词 Ito^随机系统 神经网络 指数稳定 Ito^stochastic systems neural networks exponential stability
  • 相关文献

参考文献5

二级参考文献44

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部