期刊文献+

矩阵方程AX=B的正交(P,Q)-对称解 被引量:2

Orthogonal( P,Q)-symmetric solution of matrix equation AX = B
原文传递
导出
摘要 定义了正交(P,Q)-对称矩阵的概念,通过矩阵的正交投影构造了它的结构,针对正交(P,Q)-对称矩阵的正交不变性,采用直接代入法把问题转化为求矩阵方程组的正交解,利用矩阵的正交三角分解得出了矩阵方程组有正交(P,Q)-对称解的充分必要条件,及通解的表达式.最后得出矩阵方程AX=B有正交(P,Q)-对称解的充要条件及通解表达式. Puts forward the concept of orthogonal (P,Q )-symmetric matrix,and the structure was constructed through the orthogonal projection.According to the orthogonal invariance of orthogonal (P,Q)-symmetric matrix,The problem was converted to solve orthogonal solutions of matrix equations by adopting direct substitution method.Applying the orthogonal triangular decomposition for matrix ,necessary and sufficient conditions were derived and the general expression was gotten for the orthogonal solution to the matrix equations. The necessary and sufficient conditions were derived and the general expression was put forward for the orthogonal (P,Q)-symmetric solution to the matrix equation AX=B.
出处 《湖南科技大学学报(自然科学版)》 CAS 北大核心 2014年第4期125-128,共4页 Journal of Hunan University of Science And Technology:Natural Science Edition
基金 湖南科技大学研究生创新基金资助项目(S130030)
关键词 正交(P Q)对称解 正交投影 正交三角分解 通解 orthogonal (P,Q)-symmetric solution orthogonal triangular decomposition orthogonal invariance general expression
  • 相关文献

参考文献11

二级参考文献18

  • 1张磊,谢冬秀.一类逆特征值问题[J].数学物理学报(A辑),1993,13(1):94-99. 被引量:45
  • 2谢冬秀,张磊.一类反对称阵反问题的最小二乘解[J].工程数学学报,1993,10(4):25-34. 被引量:79
  • 3张磊.一类对称矩阵的逆特征值问题[J].高等学校计算数学学报,1990,12(1):65-72. 被引量:42
  • 4周树荃,代数特征值反问题,1991年
  • 5何旭初,广义逆矩阵引论,1991年
  • 6蒋正新,计算数学,1986年,8卷,1期,47页
  • 7D. Boley, G. H. Golub. A survey of matrix inverse eigenvalue problems[J]. Inverse Problem. 1987,(3) :595-622.
  • 8张磊.闭凸锥上的逼近及其在数值上的应用[J].湖南数学年刊,1986,6(2):43-48.
  • 9W.F.Trench. Minimization problems for(R,S)-symmetric and(R,S)-skew symmetric matrices[J].Linear Algebra and its Applications,2004,(389):23-31.
  • 10张磊.一类矩阵反向题及其数值解法[J]计算数学,1987(04).

共引文献112

同被引文献19

  • 1袁永新.关于一类线性矩阵方程的对称解[J].工程数学学报,1998,15(3):25-29. 被引量:34
  • 2Filiposka M Z, Djuric A M, Elmaraghy W. Complexity analysis for calculating the Jacobian matrix of 6DOF reconfigurable machines [ J ]. Proeedia CIRP,2014 (17) : 218 - 223.
  • 3Choi H B, Ryu J. Singularity analysis of a four degree - of - freedom parallel manipulator based on an expanded 6 6 jacobian matrix [ J ]. Mechanism and Machine Theory,2012 (57) : 51 - 61.
  • 4Sakaino S, Tsuji T. An extended Jacobian matrix and muhirate control for bilateral control between different time resolution systems [ C ]//IECON 2012 - 38 th Annual Conference on IEEE Industrial Electronics Society. Montreal : IEEE, 2012.
  • 5Featherstone R. The calculation of robot dynamics using articulated - body inertias [ J ]. The International Journal of Robotics Research, 1983,2 ( 1 ) : 13 - 30.
  • 6Rodriguez G, Jain A, Kreutz - Delgado K. A spatial operator algebra for manipulator modeling and control [ J ]. The International Journal of Robotics Research, 1991,10(4) :371 - 381.
  • 7Rodriguez G. Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics [ J ]. IEEE Journal of Robotics and Automation, 1987,3 (6) : 624 - 659.
  • 8Jain A, Rodriguez G. Recursive flexible multibody system dynamics using spatial operators [ J ]. Journal of Guidance, Control, and Dynamics, 1992,15 (6) : 1453 - 1466.
  • 9Jain A. Unified formulation of dynamics for serial rigid muhibody systems [ J ]. Journal of Guidance, Control and Dynamics, 1991,14(3) :551 -542.
  • 10Jain A, Rodriguez G. An analysis of the kinematics and dynamics of underactuated manipulators [ J ]. IEEE Transactions on Robotics and Automation, 1993,9 (4) :411 - 422.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部