期刊文献+

Continuous-wave fiber cavity ring-down magnetic field sensing method based on frequency-shifted interferometry 被引量:3

Continuous-wave fiber cavity ring-down magnetic field sensing method based on frequency-shifted interferometry
原文传递
导出
摘要 We demonstrate a novel all-fiber cavity ring-down (CRD) magnetic field sensing method that uses frequency-shifted interferometry, and does not require any optical pulse and fast electronics compared with conventional C1RD schemes. The sensing element in the ring-down cavity is a fiber taper surrounded by magnetic fluid, whose refractive index varies as an external magnetic field is applied. Magnetic field strength measurement is successfully achieved within a range from 8 to 850 Gs. A resolution of 0.00105 + 0.00003 dB/Gs is obtained in the approximately linear segment from 423.2 to 766.6 Gs. The sensing method is potential for sensing other physical and chemical parameters. We demonstrate a novel all-fiber cavity ring-down (CRD) magnetic field sensing method that uses frequency-shifted interferometry, and does not require any optical pulse and fast electronics compared with conventional C1RD schemes. The sensing element in the ring-down cavity is a fiber taper surrounded by magnetic fluid, whose refractive index varies as an external magnetic field is applied. Magnetic field strength measurement is successfully achieved within a range from 8 to 850 Gs. A resolution of 0.00105 + 0.00003 dB/Gs is obtained in the approximately linear segment from 423.2 to 766.6 Gs. The sensing method is potential for sensing other physical and chemical parameters.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2014年第12期24-28,共5页 中国光学快报(英文版)
基金 supported by the Project of National Science Foundation of China(Nos.61077061 and 61377091) the Fundamental Research Funds for the Central Universities(Nos.WUT 2013-II-023 and WUT 2014-zy-115)
关键词 INTERFEROMETRY Magnetic fields MAGNETISM Refractive index Interferometry Magnetic fields Magnetism Refractive index
  • 相关文献

参考文献24

  • 1D. Z. Anderson, J. C. Frisch, and C. S. Masser, Appl. Opt. 23, 1238 (1984).
  • 2J. J. Seherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, Chem. Rev. 97, 25 (1997).
  • 3G. Berden and R. Engeln, Cavity Ring-down Spectroscopy: Techniques and Applications (Wiley-Blackwell, 2009).
  • 4B. Li, Z. Qu, Y. Hml, L. Gtm, mid L. Li, Chin. Opt. Lett. 8, 94 (2010).
  • 5D. Fan, J. Gong, and A. B. Wang, Proc. SPIE 8421, 842160 (2012).
  • 6N. Ni, C. C. Chan, L. Xia, and P. Shum, IEEE Photon. TechnoL Lett. 20, 1351 (2008).
  • 7J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, and H. W. Lee, Appl. Plays. 91, 581 (2002).
  • 8F. Ye, L. Qian, and B. Qi, Opt. Lett. 30, 2080 (2011).
  • 9F. Ye, L. Qian, and B. Qi, J. Lightwave Teehnol. 27, 5356 (2009).
  • 10R. Engeln, G. V. Helden, and G. Meijer, Chem. Phys. Lett. 262, 105 (1996).

同被引文献13

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部